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CHAPTER 1

Dynamic Programming

“ Those who cannot remember the past are condemned to repeat it. ”
Dynamic Programming , Internet1

Dynamic Programming , like the Divide-and-Conquer or Greedy method is just
another algorithm design tool. The term ‘Dynamic Programming ’ was coined by
Richard Bellman and the naming has little to do with what it does rather has a interesting
bit of history; interested readers may refer to appendix A. One generally uses Dynamic
Programming for solving some optimization problem2 whose brute-force solution takes
exponential time with respect to the input size and we simply cannot use Divide-and-
Conquer , Greedy or any other easy approach.

One might wonder whether Dynamic Programming is kind last resort i.e. go to tool
when other techniques like Divide-and-Conquer or Greedy fails. Rephrasing this, one
can see that essentially the question is: can Dynamic Programming solve any problem?
The answer is obviously no. There are yet unsolvable problems like the classical Halting
problem. Furthermore there are also solvable problems where Dynamic Programming
cannot be applied! We will study a few such cases . So now another question arises:
given a problem, how can one know whether Dynamic Programming is a suitable tool or
not!?

To apply Dynamic Programming one must first verify whether the problem exhibits
the two essential properties namely: optimal substructure and overlapping subproblem.
Note that for a given optimization problem, designing an efficient (hopefully polynomial
time) algorithm is all about carefully looking into the solution space and cautiously
examining very few(should be polynomial on input size) of the feasible solutions and
reporting the optimal one. A problem must possess aforementioned two properties in
order to get real benefit from applying Dynamic Programming .

1 https://www.hackerearth.com/practice/notes/dynamic-programming-i-1
https://www.quora.com/What-does-dynamic-programming-tell-you-about-life

2A optimization problem asks one to optimize(minimize or maximize) some quantity expressed by a
objective function with respect to some given set of constraints.

1

https://www.hackerearth.com/practice/notes/dynamic-programming-i-1
https://www.quora.com/What-does-dynamic-programming-tell-you-about-life
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Optimal Substructure
The optimal solution of the problem must be composed of optimal solution(s) of
some subproblem(s). Whenever we combine optimal solutions of more than one
subproblem, they must be independent of each other. In essence, we can define the
optimal solution recursively in terms of optimal solution(s) of the subproblem(s).

Overlapping Subproblem
A recursive algorithm tries to solve same sub problem over and over again. Total
number of distinct subproblems solved is relatively small, typically polynomial on
input size.

You might be wondering how can Dynamic Programming rely on on subproblems
being both independent and overlapping - do they not contradict each other? The answer
is no, they actually express two different notion. Two subproblems of the same problem
are independent if they do not share resources. Therefore, they could easily be combined
together to form a candidate solution. On the other hand, we say two subproblems
are overlapping if they are really the same but occurs as subproblems of two different
problems.

Let us first understand how these two actually helps in designing an efficient Dynamic
Programming algorithm. Typically there are multiple independent subproblems which
may correspond to various candidate solution of the original one. But not all of them
leads to the optimal solution. If we somehow knew(say lucky guess) which subproblem(s)
to pick, all it remains to build upon the optimal solution(s) of it(them). But there is no
such thing as lucky guess in algorithm design! The first property actually helps us narrow
down the candidate solution sets of a subproblem, as we only need to consider the optimal
one. We can now practically apply brute force on this reduced search space and pick the
subproblem(s) that actually leads to the optimal solution. Whereas the second property
implies that is a recursive algorithm revisits same subproblem repeatedly, we can cache
the previously computed result into some table. Thus we are actually computing only
once, the first time; all subsequent requirements can be served by a constant time table
lookup. This technique is called memoization. It might seem a little abstract, because it
is, but this will become clear as we explore a few Dynamic Programming algorithms in
the later sections.

Essentially a dynamic programming solutions for different problems varies on two
things: how many distinct subproblems are actually needed to consider to get the optimal
solution, and how many choices are there for determining which subproblem(s) to use in
an optimal solution. Informally, the running time of a Dynamic Programming algorithm
depends of these two factors.

Dynamic Programming algorithms can be formulated in two ways; either by a top-
down recursive approach with memoization or using a bottom-up approach where we
optimally solve smaller subproblems first then gradually increase the problem size until
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we get optimal solution of the original problem. In general, if all subproblems must be
solved at least once, a bottom-up strategy usually outperforms the corresponding top-
down memoized algorithm by a constant factor. The top-down approach has overheads
for the recursive calls and table maintenance. Alternatively, if some subproblems in the
subproblem space need not to be solved at all, the memoized top-down version has the
advantage to solve only the required ones.

Designing a Dynamic Programming algorithm more or less involves these four steps:

1. Characterize the structure of the optimal solution

2. Recursively define the value of the optimal solution

3. Compute the value of the optimal solution; typically in bottom-up fashion

4. Reconstruct (if required) the optimal solution from the choices made during step 3

In this chapter we will start by comparing Dynamic Programming with Divide-and-
Conquer and Greedy followed by the implementation details of memoization and finish
with a few case studies.
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1.1 Dynamic Programming vs Divide-and-Conquer vs
Greedy

Both Dynamic Programming and Divide-and-Conquer approach breaks the problem into
subproblems and build the solution based on the solution of the subproblems. On the
other hand both Dynamic Programming and Greedy rely on having optimal substructure
property of the problem definition. Therefore it is intuitive compare these three strategies
and know their differences.

In general, a problem having an efficient Divide-and-Conquer algorithm often lacks
the overlapping subproblem property. In Divide-and-Conquer algorithms at each recur-
sive call it generates new and new subproblems to solve; therefore memoization does not
help whereas in Dynamic Programming same subproblems are revisited repeatedly and
memoization does help significantly.

Although both the Greedy strategy Dynamic Programming exploits optimal sub-
structure property one major difference is how they choose a subproblem. Instead of
evaluating all candidate subproblems and choosing the one that leads to a globally opti-
mal solution, a Greedy algorithm first makes a ‘greedy’ choice - that seems best at the
moment, only then it tries to solve the chosen subproblem. Therefore Greedy algorithms
are often faster but there is the risk of being stuck at local optima. One can think of
Dynamic Programming as bottom-up approach where we choose suitable subproblems at
each step and finally get the optimal solution, whereas Greedy works in top-down fashion
where at each step it makes a greedy locally optimum choice and then only solves the
resulting subproblem.
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1.2 Memoization
Before delving further into Dynamic Programming paradigm let us first study how to
implement memoization and how much benefit we can actually obtain. Consider the
problem of calculating the n-th Fibonacci number recursively as per the definition3.

fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

Figure 1.1: Recursion tree for fib(n) when n = 5

Theorem 1.2.1. There are Θ(2n) recursive calls for a single call to fib(n).

Proof. Let T (n) be the total number of recursive calls made for a single call to fib(n).
We will show that 2n/2 ≤ T (n) ≤ 2n, ∀n ≥ 2 using induction on n.
Basis: We have T (2) = 1 + 1 = 2 therefore 22/1 ≤ T (2) ≤ 22. Similarly, T (3) =
T (2) + 1 = 3 thus 23/1 ≤ T (3) ≤ 23.
Hypothesis: Let’s assume that the statement holds for both T (n− 1) and T (n− 2).
Inductive step:

T (n) = T (n− 1) + T (n− 2)

≤ 2n−1 + 2n−2

= 2n−2[2 + 1]

< 2n−2 × 4 = 2n

T (n) = T (n− 1) + T (n− 2)

≥ 2(n−1)/2 + 2(n−2)/2

= 2(n−2)/2[
√

2 + 1]

> 2(n−2)/2 × 2 = 2n/2

�

As depicted in figure 1.1 there are exactly n recursive calls we need to compute the
respective value for the first time; all subsequent calls, shown in blue, can be replied with

3fib(n) =

{
n when n ≤ 1

fib(n− 1) + fib(n− 2) otherwise
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the cached results. Caching return values in case of recursive calls is called memoization.
The result is cached into a memo table indexed by the call argument(s). Assume that we
have an array f [0 . . . n] stored somewhere globally. The following pseudo code should
clarify how one can apply memoization. As evident from figure 1.1 this pseudocode runs

Algorithm 1 Memoized Fibonacci Computation
1: procedure INITTABLE(n)
2: for i← 0 to n do
3: f [i]← −1 . Some marker value
4: end for
5: end procedure

1: procedure FIB(n)
2: if f [n] 6= −1 then return f [n] . return the memoized value
3: end if
4: if n ≤ 1 then . base case
5: f [n]← n
6: return f [n]
7: end if
8: f [n]← FIB(n− 1) + FIB(n− 2)
9: return f [n]

10: end procedure

in linear time as its only computes the value for the left branch from the root(the black
nodes) and all right branch(the subtrees at rooted at some blue node) values are looked
up in constant time from the table f . The same recursion tree essentially gets reduced to
figure 1.2.

Now consider the problem of calculating binomial coefficient recursively as follows:(
n

k

)
=

{(
n−1
k−1

)
+
(
n−1
k

)
when 0 < k < n

1 otherwise
(1.1)

Theorem 1.2.2. Show that the above expression correctly computes
(
n
k

)
Proof. Left as an exercise. �

Theorem 1.2.3. Show that a simple recursive formulation takes Ω(
(
n
k

)
) time.

Proof. Left as an exercise. �

We can use memoization here also; the memo table in this case generates the Pascal’s
triangle as depicted in figure 1.3. The table is filled line by line. In fact, it is not even
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fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(3)

Figure 1.2: Memoized Recursion tree for fib(n) when n = 5

required to store a matrix; it is sufficient to just keep a vector of length k for the current
line and calculate the next line by updating the entries from left to right. Thus the
algorithm takes O(nk) time and O(k) space for its execution. A practice exercise would
be to ask you to formally write the algorithm (either in plain text or pseudocode format).

0 1 2 . . . k-1 k
0 1
1 1 1
2 1 2 1
...

n-1
(
n−1
k−1

) (
n−1
k

)
↘ ↓

n
(
n
k

)
Figure 1.3: Pascal’s triangle

Again we have seen that memoization4 helps. With this in mind we can now turn out
attention to some interesting problems in the following sections which have very nice
Dynamic Programming algorithms. Not only these examples are excellent candidates for
studying design and analysis of algorithms but also they help you better understand the
notion of Dynamic Programming .

4For practical purposes if not all of the possible subproblems are not required, we can memoize by
hashing on the indices/function arguments, instead of creating a large table, to optimally use the storage
space with negligible compromisation on the lookup time.
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1.3 Weighted Independent Set in Path Graph
Let us begin by defining a few terms.

Path Graph A path graph Pn of n vertices is a degenerate tree where exactly two
vertices have degree one(the end vertices) and all other n− 2 vertices have degree
exactly two. A path graph is generally drawn as a straight line with vertices lying
on it.

Independent Vertex Set Given a graph G = (V,E), two vertices u, v ∈ V are said
to be independent if the edge (u, v) /∈ E. Note that if the graph is directed both
〈u, v〉 /∈ E and 〈v, u〉 /∈ E must hold. An independent vertex set S is a subset of
vertices where every pair of vertices in S are independent. Using mathematical
notations we can write, S ⊆ V such that ∀u, v ∈ S, (u, v) /∈ E.

Weighted Independent Set When the vertices have some weights associated with them,
we define the weight of a independent set as sum of weights of the vertices in it.

Given a graph G = (V,E), the maximum weighted independent set problem is to find
an independent set S of G having the maximum weight. Therefore it a optimization
problem where we try to maximize the set weight. Here we will restrict ourselves to only
path graphs having positive vertex weights.

A

2

B

5

C

6

D

5

E

1

Figure 1.4: An example path graph P5

The path graph shown in figure 1.4 has the following independent sets: ∅, {A}, {B},
{C}, {D}, {E}, {A,C},{A,D}, {A,E}, {B,D}, {B,E}, {C,E}, {A,C,E} out of these only
{B,D} has the maximum weight value of 10. As you can imagine the possibilities of
the independent subsets grows exponentially with n implying that we need an efficient
algorithm rather than using a brute-force approach.

Theorem 1.3.1. The number of possible independent sets of a path graph Pn is Θ(2n).

Proof. We know that there are 2n possible subsets of a given set of n vertices out of
these not all are independent set. For example {A,B,C} is not an independent set for
figure 1.4. We will begin the proof by formulating a recurrence relation for the number
of possible independent sets of given path graph.

Suppose we have indexed the vertices from 1 to n of a given path graph Pn, starting
at one end and finishing at the other. Let f(n) denotes the possible independent sets of
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Pn. There are only two possible choices for the n-th vertex: either it is in a independent
set or not. When we exclude the n-th vertex then we can build f(n− 1) independent sets
with first n − 1 vertices. Whereas if we include the n-th vertex then we must exclude
n− 1-st vertex, thus can build only f(n− 2) independent sets. Now these two counts are
disjoint by construction. Therefore we have f(n) = f(n− 1) + f(n− 2) with f(0) = 1
and f(1) = 2. Following the proof of theorem 1.2.1 we have f(n) = Θ(2n) �

Following the above proof we can see that our optimization problem has a nice
recursive structure. The optimal solution of n vertices must be one of two following
cases: optimal solution for first n− 1 vertices when we exclude n-th vertex; or optimal
solution for first n− 2 vertices and we include weight n-th vertex. Let OPT (n) be the
optimal value, weight of the maximum weighted independent set of a given path graph
Pn along with a weight vector W . Then we have

OPTn =


0 when n = 0

W1 when n = 1

max {OPTn−1, Wn + OPTn−2} otherwise
It is evident that the problem possess both optimal substructure and overlapping

subproblem properties of Dynamic Programming . Assuming the input weight array
w[1 . . . n] and the memo table OPT [0 . . . n] stored somewhere globally, the top-down
algorithm with memoization looks as follows.

Algorithm 2 Maximum Weighted Independent Set in Path Graph Top-Down Approach
1: procedure INITTABLE(n)
2: for i← 0 to n do
3: OPT [i]← −1 . Some marker value
4: end for
5: OPT [0]← 0 . base values
6: OPT [1]← w[1]
7: end procedure

1: procedure MAXINDSET(n)
2: if OPT [n] 6= −1 then return OPT [n] . return the memoized value
3: end if
4: OPT [n]← max{MAXINDSET(n− 1), w[n] + MAXINDSET(n− 2)}
5: return OPT [n]
6: end procedure

Similarly we can formulate a bottom-up algorithm as given below. Now its time
for talking about correctness as well as time and space complexities for both of the
approaches.
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Algorithm 3 Maximum Weighted Independent Set in Path Graph Bottom-Up Approach
1: procedure MAXINDSET(n)
2: OPT [0]← 0 . base values
3: OPT [1]← w[1]
4: for i← 2 to n do
5: OPT [i]← max{OPT [i− 1], w[n] + OPT [i− 2]}
6: end for
7: return OPT [n]
8: end procedure

Both top-down and bottom-up strategies essentially relies on the above recurrence
whose correctness follows from the following “cut-and-paste” argument. Note that
optimization problem is a maximizing one. If we does not include optimal solution
values of the subproblems to get the actual solution, we could then simply cut the non
optimal subsolution and paste the optimal one in its place. This would give us a larger
solution value of the original problem and contradicts the assumption of our solution
being an optimal one. We can conclude the proof by stating that our case analysis was
disjoint and exhaustive.

The space requirement is for both of theses algorithms is Θ(n). Both of them solves
each of the subproblems exactly once and for each one of them we have just two choices:
whether to include the last vertex or not, each choice involves constant number of
operations. There are n many subproblems each requires only constant amount of work
giving us running time of Θ(n).

We could also reconstruct the optimal independent set by back tracing our process of
getting the optimal value. At each subproblem we had only two choices we just need
to know which choice did us lead to the optimal result. Recall that a choice here is
essentially deciding whether to include a vertex into the optimal independent set or not.
One could also store the choice while making it to speedup the reconstruction. Writing a
formal algorithm which reconstructs the optimal independent set in linear time is left as
an exercise.



1.4. Rod Cutting 11

1.4 Rod Cutting
Given a rod of length n and a price table pi for i = 1, 2, . . . , n, determine the maximum
revenue value rn obtainable by cutting up the rod and selling the pieces. Note that if the
price pn is large enough, an optimal solution may require no cutting at all.

A naı̈ve brute force solution would be to try all possible cuts and take the maximum
among them. This algorithm will basically evaluate all possible (unique) partitions of the
given integer n. Interested readers may read up more about Integer Partitioning. As you
have already guessed the solution is space quite large making this approach is inefficient
and possibly infeasible for large n.

One may argue about formulating a Greedy or Divide-and-Conquer algorithm which
solves the problem in polynomial time. Thinking carefully one would realize making a
greedy choice may not lead to the optimal cut whereas Divide-and-Conquer could not
figure out which of the subproblem(s) will lead to the optimal solution so that it can
recurs on it.

Therefore, we could try to fit the problem into Dynamic Programming paradigm.
Let us first verify whether the problem exhibits the aforementioned two properties
namely: optimal substructure and overlapping subproblem. For that we need to come up
with a good recurrence for the problem itself. Suppose we cut the rod into two halves
first(possibly also as 0 + n) and the recursively solve the problems for the two smaller
rods. But how come we could possibly know where to cut first! But once known the
problem essentially reduces to optimally cut the tow smaller halves. We can thus calculate
the optimal revenue value of rod cutting as maximum among all possible optimal cuts of
smaller rods: rn = max{pn, (r1 + rn−1), (r2 + rn−2), . . . (ri + rn−i), . . . , (rn−1 + r1)}.
This essentially exhibits that the problem does possess optimal substructure property.
Moreover same ri values are required over and over inside the recursive calls; implying
the overlapping subproblem property.

Now we are in a good place to actually formulate a Dynamic Programming algorithm
for the rod cutting problem. But before doing that let us optimize the recurrence a little
bit. Suppose, instead of cutting at the middle we cut at one side; then could just optimally
solve for the remaining rod. The above recurrence then turns into: rn = max

1≤i≤n
(pi + rn−i)

with revenue r0 = 0. Writing the algorithm is now straight forward.

Lemma 1.4.1. Procedure 4 takes exponential run time

Proof. Left as an exercise. [hint: solution of T (n) = Θ(1) +
n−1∑
j=0

T (j) is O(2n)] �

Lemma 1.4.2. This using memoization the time complexity reduces to Θ(n2)

Proof. Writing the formal algorithm is left as an exercise. The memo table initialization
requires Θ(n) operations. The actual procedure now recursively solves each subproblem

https://en.wikipedia.org/wiki/Partition_(number_theory)
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Algorithm 4 Rod Cutting Top-Down Approach
Require: The price array p[1 . . . n] stored somewhere globally

1: procedure CUTROD(n)
2: if n = 0 then return 0
3: end if
4: r ← −∞
5: for i← 1 to n do
6: tmp← p[i] + CUTROD(n− i)
7: if tmp > r then
8: r ← tmp
9: end if

10: end for
11: return r
12: end procedure

exactly once and all subsequent calls are replied in constant time. There are exactly
n + 1 subproblems of sizes 0, 1, . . . , n. To solve each subproblem of size i the for loop
iterates exactly i times. Therefore, total number of iterations over the entire execution
is 1 + 2 + · · ·+ n = Θ(n2). This gives a total cost of Θ(n2). The space complexity is
Θ(n). �

Lemma 1.4.3. Using a bottom-up approach the complexities remain same.

Proof. We will begin by writing the formal algorithm (see algorithm 5). The procedure
now iteratively solves each samller subproblems first then the larger ones. The outer loop
iterates n times while at j-th pass of the outer loop the inner loop iterates j times. Thus
the statements inside the inner loop gets executed a sum total of 1 + 2 + · · ·+n = Θ(n2)
times. This gives a total running cost of Θ(n2) same as before. The space complexity is
same Θ(n) due to the OPT table. �

Lemma 1.4.4. Both the bottom-up and top-down procedure correctly solves the optimal
rod cutting problem

Proof. The proof of optimality for both of the algorithms essentially relies of the recur-
rence we formed for the rn which again relies on optimal substructure property of the
problem itself and uses “cut-and-paste” argument as before. Let us assume the optimal
first cut is of length i as per the algorithm. Then we have rn = max

1≤k≤n
(pk + rn−k). Now

suppose optimal value is some r∗n which must have a first cut, say of length i (1 ≤ i ≤ n).
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Algorithm 5 Rod Cutting Bottom-Up Approach
Require: The price array p[1 . . . n] stored somewhere globally

1: procedure CUTROD(n)
2: let OPT [0 . . . n] be a new array
3: for j ← 1 to n do
4: r ← −∞
5: for i← 1 to j do
6: tmp← p[i] + CUTROD(j − i)
7: if tmp > r then
8: r ← tmp
9: end if

10: end for
11: OPT [n]← r
12: end for
13: return OPT [n]
14: end procedure

Therefore we can write r∗n = pi + r∗n−i. Now we have

r∗n > rn

pi + r∗n−i > max
1≤k≤n

(pk + rn−k)

pi + r∗n−i > pi + rn−i

r∗n−i > rn−i

This question the optimality of rn−i; which is a contradiction. �

Lemma 1.4.5. We can also obtain the cut sizes that leads to the optimal solution.

Proof. This will require augmenting our algorithm to keep track of which length was
the optimal(winner) for each sub problem. Thus another n sized table would suffice.
After computing the final solution value, we can then reconstruct the cut sizes from this
auxiliary table in backward fashion. Writing formal algorithms is left as an exercise. �



14 Chapter 1. Dynamic Programming

1.5 Subset Sum
Given n items indexed from 1 though n each having a nonnegative weight wi, for
i = 1, 2, . . . , n and a maximum weight bound W . We are to select a subset of items
so that total weight of the subset is maximized but not exceeding W . Note that total
weight of a subset means the sum of weights of the items in that subset. We will restrict
ourselves to only integral values for the weights and the weight bound. We can state
this as a linear programming problem whose solution is a vector x[1 . . . n] with xi = 1
denoting i-th element is in the optimal subset and 0 otherwise.

maximize
n∑

i=1

xiwi

subject to
n∑

i=1

xiwi ≤ W

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

A straight forwards brute force approach is to examine all of the 2n possible subsets to
get the optimal one which makes it a very inefficient algorithm. One can argue about
formulating some greedy strategy; then again it is possible to create instances where
the Greedy strategy fails5. For example if a Greedy algorithms picks the weights in
decreasing order then it fails to find the optimal solution for the instance {W

2
+ 1, W

2
, W

2
}.

Again if it selects the smallest weight first then also it fails for the instance {1, W
2
, W

2
}.

Just like previous two problems, let us try to formulate a recursive definition of the
optimal value (the maximum possible weight). For the n-th item we really have only
two choices either to include it in the optimal set or not. If the optimal solution does not
include n-th item then it must also be optimal solution of first n− 1 items. Whereas if
the optimal solution does include n-th item then we reserve the weight for n-th item and
then look at optimal solution of first n− 1 items but with the remaining weight capacity.
Note that the subproblem varies in two degrees: one is number of items it is solving
for another is current remaining weight capacity. Furthermore, the n-th item can only
be added if its weight does not exceed the current (remaining) weight capacity. Let us
formalize it as follows:

OPTn,W =


0 when n = 0

OPTn−1,W when wn > W

max{OPTn−1,W , wn + OPTn−1,W−wn} otherwise

Theorem 1.5.1. Show that the above recurrence correctly computes the optimal value.

Proof. Left as an exercise. [hint: use the “cut-and-paste” argument with induction] �

Note that although the problem does exhibits optimal substructure property it may
lack the overlapping subproblem property if all the weight values including the bound are

5So far no known Greedy strategy exist which solves the problem optimally.
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not integral. Following this recurrence, one can easily formulate an algorithm. Assume
that the input weight array w[1 . . . n] and the memo matrix OPT [0 . . . n, 0 . . .W ] stored
somewhere suitably.

Algorithm 6 Subset Sum Top-Down Approach
1: procedure INITTABLE(n,W )
2: for i← 0 to n do
3: for j ← 0 to W do
4: OPT [i, j]← −1 . some marker value
5: end for
6: end for
7: for j ← 0 to W do
8: OPT [0, j]← 0 . base values
9: end for

10: end procedure

1: procedure SUBSETSUM(n,W )
2: if OPT [n,W ] 6= −1 then return OPT [n,W ] . return the memoized value
3: end if
4: tmp← OPT [0, j]← 0
5: if w[n] > W then
6: OPT [n,W ]← SUBSETSUM(n− 1,W )
7: else
8: OPT [n,W ]← max

{
SUBSETSUM(n− 1,W ),

w[n] + SUBSETSUM(n− 1,W − w[n])

}
9: end if

10: return OPT [n,W ]
11: end procedure

Both top-down and the bottom-up approach essentially does the same amount of
work: solving the subproblems optimally exactly once and generate the optimal solution
using them. As it is evident there are (n+ 1)× (W + 1) subproblems and solving for i-th
one is essentially deciding whether to include i-th item or not; we only require constant
amount of work in either case. Thus total running time is O(nW ) and space requirement
is also O(nW ). We call this type of algorithms pseudo-polynomial and are considered
reasonably fast. It should be noted that if W is large enough top-down approach may run
faster as it might not need to solve all the subproblems.

One can view the subset sum problem as a job scheduling problem on a system where
the items are the jobs and the weights are the resource requirement of each jobs and
of course the system has some fixed amount of resources available only giving us a
maximum weight bound.
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Algorithm 7 Subset Sum Bottom-Up Approach
1: procedure SUBSETSUM(n,W )
2: for j ← 0 to W do
3: OPT [0, j]← 0 . base values
4: end for
5: for i← 0 to n do
6: for j ← 0 to W do
7: if w[i] > W then
8: OPT [i, j]← OPT [i− 1, j]
9: else

10: OPT [i, j]← max

{
OPT [i− 1, j],

w[i] + OPT [i− 1, j − w[i]]

}
11: end if
12: end for
13: end for
14: return OPT [n,W ]
15: end procedure

The above procedures only gives us the total weight for the optimal subset. Suppose
we wish to also obtain the optimal set itself. We then could augment our algorithm to
keep track of our decision for each of the subproblems and later reconstruct the solution
set. For this we will use an auxiliary boolean matrix sol[1 . . . n, 0 . . .W ].

Writing a non-recursive (iterative) reconstruction procedure is left as an exercise. In
either case we require O(nW ) to store the decision we made at each subproblem and the
actual reconstruction is done in linear time(a single pass from n down to 1).

1.5.1 A Generalization: Knapsack Problem

The problem is often associated with a story which goes as follows: a thief robbing a
jewelry store wishes to take as much valuable things as he can into his knapsack such
that total weight of the loot does not exceed the weight capacity of the knapsack.

Therefore we have n items indexed from 1 though n each having a nonnegative
weight wi and also a value vi, for i = 1, 2, . . . , n and a maximum weight bound W . We
are to select a subset of items to put into the knapsack so that total weight of the subset
is maximized but not exceeding W , capacity of the knapsack. We will again restrict
ourselves to only integral values for the weights and the weight bound.

The subset sum problem can be seen just as a special case of knapsack problem
where vi is same as wi, ∀i = 1, 2, . . . , n.
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Algorithm 8 Subset Sum Reconstruction
1: procedure SUBSETSUM(n,W )
2: for j ← 0 to W do OPT [0, j]← 0 . base values
3: end for
4: for i← 0 to n do
5: for j ← 0 to W do
6: tmp← w[i] + OPT [i− 1, j − w[i]]
7: if w[i] > W or OPT [i− 1, j] > tmp then . i-th item isn’t selected
8: OPT [i, j]← OPT [i− 1, j]
9: sol[i, j]← 0

10: else . i-th item is selected
11: OPT [i, j]← tmp
12: sol[i, j]← 1
13: end if
14: end for
15: end for
16: return OPT [n,W ]
17: end procedure

1: procedure RECONSTRUCT(n,W ) . Recursive
2: if n = 0 then return
3: else if sol[n,W ] = 0 then . n-th item isn’t selected
4: RECONSTRUCT(n− 1,W )
5: else . n-th item is selected
6: RECONSTRUCT(n− 1,W − w[n])
7: print n
8: end if
9: end procedure

We can state this as a linear programming problem whose solution is a vector
x[1 . . . n] with xi = 1 denoting i-th element is in the optimal subset and 0 otherwise.

maximize
n∑

i=1

xivi

subject to
n∑

i=1

xiwi ≤ W

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

Devising formal algorithms relies on the following recurrence, and thus left as exercises

OPTn,W =


0 when n = 0

OPTn−1,W when wn > W

max{OPTn−1,W , vn + OPTn−1,W−wn} otherwise
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1.6 Matrix-chain Multiplication
Given a sequence(chain) 〈A1, A2, . . . , An〉 of n matrices, we wish to compute the product
A1 × A2 × · · · × An. Recall that in general matrix multiplication is commutative but
not associative. The order of the multiplications of the matrices can be denoted by fully
parenthesizing the given chain. Therefore we have many possible parenthesization to
choose from to obtain the same final resultant matrix. Assume that we are using standard
matrix multiplication algorithm (see algorithm 9) which takes two matrices A and B
along their dimensions as input and output the resultant matrix C.

Algorithm 9 Standard Matrix Multiplication
1: procedure MATRIXMULTIPLY(A,B, p, q, r)
2: take a new matrix C[1 . . . p, 1 . . . r]
3: for i← 1 to p do
4: for j ← 1 to r do
5: C[i, j]← 0
6: for k ← 1 to q do
7: C[i, j]← C[i, j] + A[i, k] ·B[k, j]
8: end for
9: end for

10: end for
11: return C
12: end procedure

Recall that we can multiply two matrices only if they are multiplication compatible,
that is, number of columns of first matrix must be equal to number of rows in the second
one. Here our two input matrices have are of dimensions p × q and q × r, therefore
resultant matrix will be of dimension p×r. Following the algorithm, we need to compute
all pr cells in C, for which need have to perform a dot product of two q sized vectors
(pair wise multiplication followed by summations). Therefore we need a total of Θ(pqr)
operations, to be more precise there exactly pqr number of scalar multiplication involved.

Let us consider a case with chain size of 3 and the matrices A1, A2, A3 are of
dimensions 20× 12, 12× 19, 19× 92 respectively. There are only two possible paren-
thesizations: ((A1 × A2)× A3) and (A1 × (A2 × A3)). Multiplying A1withA2 requires
exactly 20×12×19 scalar multiplications and results into a matrix of dimension 20×19.
Therefore ((A1 × A2) × A3) performs a total of (20 × 12 × 19) + (20 × 19 × 92) =
4560 + 34960 = 39520 scalar multiplications. Similarly, (A1 × (A2 × A3)) requires
a total of (12 × 19 × 92) + (20 × 12 × 92) = 20976 + 22080 = 43056 scalar multi-
plications. As it is evident different parenthesization incurs different cost(total number
of scalar multiplications). This brings us to the problem finding the optimal possible
parenthesization which minimizes the cost.
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Formally, the matrix-chain multiplication problem is as follows: given a chain
〈A1, A2, . . . , An〉 of n matrices along with their dimensions we want to fully parenthesize
the product A1 × A2 × · · · × An in a way that minimizes the number of total scalar
multiplications.

Counting the number of possible solutions

You might have guessed the number of possible parenthesizations grows rapidly as n
increases. Combinatorics allows us to nicely calculate the number of possible parenthe-
sizations. Let us denote that number by Pn. Given a chain of length n there are exactly
n− 1 we can split it into two sub chains. This gives us the following recurrence:

Pn =

1 when n = 1
n−1∑
k=1

Pk + Pn−k otherwise

It can be shown that Pn = Cn−1 where Cn is n-th Catalan number6 defined as follows.

Cn =
1

n + a
= Ω(4n/n3/2)

This clearly indicates that a mere exhaustive search (brute-force) will be very inefficient.

The optimal substructure property

Given a product chain A1 × A2 × · · · × An, an optimal parenthesization must have one
of the multiplication (out of n− 1 multiplications there is) performed at the very end -
the multiplication operator corresponding to the outer most parenthesis. This essentially
gives us the above recurrence. An optimal parenthesization thus gives us two subchains
to multiply first then only we can multiply these two results to get the final resultant
matrix. For a given chain A1 × A2 × · · · × An, let the optimal parenthesization gives us
a prefix subchain A1 ×A2 × · · · ×Ak and a suffix subchain Ak+1 ×Ak+2 × · · · ×An to
solve first (for some k, 1 ≤ k < n).

Let us now use the “cut-and-paste” argument to establish the fact that an optimal
parenthesization must have its two subchains optimally parenthesized. Suppose for some
input instance the optimal solution does uses the optimal parenthesization of its prefix
subchain. Then we can simply replace that solution of prefix subchain by its optimal one
and reduce the overall number of scalar multiplication as all other operations (number of
scalar multiplications for suffix chain, and the final matrix multiplication remain same).

6Catalan number, named after the Belgian mathematician Eugène Charles Catalan, often comes up in
context various counting problems. It is often used to denote the total number of possible Binary Search
Trees(a type of ordered binary tree) with n distinct keys. Our parenthesization problem is essentially
corresponds to building an expression tree where the operands matrices appear in a fixed (left-to-right)
order as leave nodes of the tree.
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The contradicts our assumption about the overall parenthesization being optimal one.
Similar argument holds for the suffix chain also.

Formulating a recursive solution

The above observation suggests that an optimal parenthesization can be obtained by
recursively parenthesizing the two subchains optimally. Now there is tiny bit of problem
we need to address first. We can split a chain of length n into two nonempty subchains in
n− 1 ways. We must now figure out that among these n− 1 prefix-suffix choices which
pair actually correspond ot the optimal one. The answer is simple: the pair that incurs
minimum number of total scalar multiplications. Suppose we evaluate all of the n− 1
prefix-suffix pairs and take the one with minimum number of total scalar multiplications.

One might ask, hey aren’t we will be looking at all possible choices for every
subproblem? How come it then can be any better than brute-force approach? To answer
this we refer to our previous observation that a optimal parenthesization only involves
two optimally parenthesized subchains. Thus for each choice we need to look at only
the optimal solutions of the prefix and suffix subchains - this reduces the search space
significantly.

For chain of n matrices we have a total of n + 1 dimensions. Assume that we have
stored them in an array d[0 . . . n] such that i-th matrix has its two dimensions at d[i− 1]
and d[i] respectively. Now we are in a position to write a recursive definition of the
optimal solution. Let us for now, concern ourselves only finding the optimal cost, that
is, minimum number of total scalar multiplications required. Let OPTi,j denotes the
optimal cost of multiplying the subchain Ai × A2 × · · · × Aj for 1 ≤ i ≤ j ≤ n. If the
optimal solution splits the chain into two parts at index k for i ≤ k < j, we have

OPTi,j =
optimal cost for

prefix chain
+

optimal cost for
suffix chain

+
cost of final multiplication of the
resultant matrices of two chains

=
optimal cost for
Ai × · · · × Ak

+
optimal cost for
Ak+1 × · · · × Aj

+
cost of multiplying two matrices

having dimensions
di−1 × dk and dk × dj

= OPTi,k + OPTk+1,j + di−1 · dk · dj

Therefore we can the write

OPTi,j =

{
0 when i = j

min
i≤k<j

{OPTi,k + OPTk+1,j + di−1 · dk · dj} otherwise

The base case i = j refers to a subchain of length one which does not require any
multiplication at all thus incurs a cost value of 0.
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Devising a Dynamic Programming Algorithm

Earlier we have discussed that in order to formulate an efficient Dynamic Programming
algorithm the problem must exhibit optimal substructure and overlapping subproblems
property. We have already observed the problem does exhibit optimal substructure
property and thus written the above recurrence. Now in order to show it also possess
overlapping subproblems property consider the following argument. By looking at the
above recurrence it is evident for any chain we need to examine all possible prefix
subchains and all possible suffix subchains of it. When we will try to solve one of the
prefix subchain all of its prefixes will overlap with the prefixes of the larger chain. Similar
argument holds for the suffix chain.

With this in mind, it is straight forward to write a recursive algorithm based on the
above recurrence. Assume that we keep the memo table OPT [1 . . . n, 1 . . . n] somewhere
globally accessible place. Choice for this exact size is justified later on.

Algorithm 10 Matrix Chain Multiplication Top-Down Memoized Approach
1: procedure INITTABLE(n)
2: for i← 1 to n do
3: for j ← 1 to n do
4: OPT [i, j]←∞ . a marker value
5: end for
6: end for
7: end procedure
1: procedure MATCHAINMULT(d, i, j)
2: if OPT [i, j] <∞ then return OPT [i, j] . return the memoized value
3: end if
4: if i = j then . base case
5: OPT [i, j]← 0
6: return OPT [i, j]
7: end if
8: for k ← i to j − 1 do . find the prefix-suffix pair having minimum cost

9:
tmp← MATCHAINMULT(d, i, k) + MATCHAINMULT(d, k + 1, j)

+ d[i− 1] ∗ d[k] ∗ d[j]
10: if tmp < OPT [i, j] then
11: OPT [i, j]← tmp
12: sol[i, j]← k
13: end if
14: end for
15: return OPT [i, j]
16: end procedure
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The correctness of this algorithm relies on that of the recurrence itself. Notice
that we have a colored statement (line 12). Assuming we also keep another matrix
sol[1 . . . n, 2 . . . n] to keep track of the optimal splitting index for each subchain. This
will help us reconstruct the optimal solution as we will see later on.

There are only
n∑

i=1

n∑
j=i

1 = Θ(n2) number of distinct subchains to memoize for and

this justifies our previous choice for the memo table size. Thus the algorithm take Θ(n2)
amount of space for the memo table (this also covers for the sol matrix). Now there are
Θ(n2) number of distinct subproblems to solve. Using memoization we only solve each
of them once and reuse the computed value later on. Now for a subchain of length n
there are exactly n−1 many splitting choices to choose from(the one incurring minimum
cost) and each of then requires constant time for evaluation(assuming the optimal values
of the subchains are already known). In general for a chain starting at index i and ending
at index j we have exactly j − i prefix-suffix subchain pair choices. Thus along with the

Θ(n2) initialization cost, total work required is Θ

(
n2 +

n∑
i=1

n∑
j=i

(j − i)

)
= Θ(n3).

Lemma 1.6.1. Memoization thus turn a Ω(2n) recursive algorithm for matrix-chain
multiplication into a Θ(n3) algorithm.

Proof. Left as an exercise.
[breadcrumbs: Write the recursive algorithm without memoization. Derive the following
recurrence.

T (n) ≥

1 when n = 1

1 +
n−1∑
k=1

(T (k) + T (n− k) + 1) otherwise

Show that T (n) ≥ 2n−1, ∀n ≥ 1 by induction.] �

Lemma 1.6.2. There are total Θ(n3) number of table references.

Proof. Consider a subchain Ai × · · · × Aj for 1 ≤ i ≤ j ≤ n. It is referred as a prefix
subchain of Ai × · · · × Ay for i ≤ y ≤ n and a suffix subchain of Ax × · · · × Aj for
1 ≤ x ≤ j. Since these are the only cases where we refer to the subchain Ai × · · · × Aj ,
we have a total of (n−j)

as proper prefix + (i−1)
as proper suffix + 1

itself = n− (j− i) references per subchains.
Yielding a total reference count of

Θ

(
n∑

i=1

n∑
j=i

(n− (j − i))

)
= Θ(n3). �



1.6. Matrix-chain Multiplication 23

Similarly one can formulate a bottom-up iterative solution by solving optimally for
smaller subchains first then use those results to solve for larger chains. Here we iterate
over the chain length. Starting with subchain of length 1 (trivial base case) then we solve
for all subchains of length 2 after that subchains of length 3 and continuing this until we
solve for the chain of length n.

Consider the subchains of length len, the only possibilities are (A1 × · · · × Alen),
(A2 × · · · ×Alen+1), (A3 × · · · ×Alen+2), . . . , (An−len+1 × · · · ×An). In general, if we
consider a chain Ai× · · ·×Aj then i ranges from 1 to n− len+ 1 and for every value of
i the value of j is calculated as i + len− 1. The following table should illustrates this.

subchains len i=1 to n-len+1 j=i+len-1
1,5 5 1 to 1=5-5+1 1+5-1=5

1,4 2,5 4 1 to 2=5-4+1 1+4−1=4
to 2+5−1=5

1,3 2,4 3,5 3 1 to 3=5-3+1 1+3−1=3
to 3+3−1=5

1,2 2,3 3,4 4,5 2 1 to 4=5-2+1 1+2−1=2
to 4+2−1=5

1,1 2,2 3,3 4,4 5,5 1 1 to 5=5-1+1 1+1−1=1
to 5+1−1=5

Algorithm 11 Matrix Chain Multiplication Bottom-Up Approach
1: procedure MATCHAINMULT(d, n)
2: for i← 1 to n do
3: OPT [i, i]← 0 . base values for chain length of 1
4: end for
5: for len← 2 to n do
6: for i← 1 to n− len + 1 do
7: j ← i + len− 1
8: OPT [i, j]←∞
9: for k ← i to j − 1 do

10: tmp← OPT [i, k] + OPT [k + 1, j] + d[i− 1] ∗ d[k] ∗ d[j]
11: if tmp < OPT [i, j] then
12: OPT [i, j]← tmp
13: sol[i, j]← k
14: end if
15: end for
16: end for
17: end for
18: return OPT [1, n]
19: end procedure

Notice that as previous we are storing the optimal splitting position into the sol matrix
to facilitate reconstruction.
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Running time of this algorithm is same as before Θ(n3) and the same argument holds.
Alternatively the same can be calculated as follows:

Θ

(
n +

n∑
len=2

(
n−len+1∑

i=1

(
(i+len−1)−1∑

k=i

1

)))
Θ

(
n +

n∑
len=2

(
n−len+1∑

i=1

(len− 1)

))
Θ

(
n +

n∑
len=2

((n− len + 1)(len− 1))

)
Θ

(
n +

n∑
len=2

(n · len− len2 + len− n + len− 1)

)
= Θ(n3)
The space requirement is same Θ(n2) as before.

Reconstructing the optimal solution

The above procedures only returns the optimal cost, the minimum number scalar multi-
plications required to multiply a given matrix chain. But for all practical purposes we
need to know the actual parenthesization corresponding to the optimal cost. Recall that
every time we have solved for a subchain we have also kept track of where to optimally
split that subchain by storing the splitting index k into the sol matrix. The following
procedure prints the optimal parenthesization based on the indices stored into sol matrix.

Algorithm 12 Print Optimal Matrix Chain Multiplication Order
1: procedure PRINTOPTIMALORDER(sol, i, j)
2: if i = j then
3: print “A”i

4: else
5: k ← sol[i, j]
6: print “(”
7: PRINTOPTIMALORDER(sol, i, k)
8: print “× ”
9: PRINTOPTIMALORDER(sol, k + 1, j)

10: print “)”
11: end if
12: end procedure

Since Similarly one can formulate a procedure for actually multiplying the chain
optimally. Writing the pseudocode is left as an exercise. [hint: recursively reduce the
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two subchains into two matrices and then return the result after multiplying them by
algorithm 9.]
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1.7 A List of Problems

1.8 Another List



1.9. Summary 27

1.9 Summary
• We may apply Dynamic Programming to some optimization problem generally

when Divide-and-Conquer and Greedy fails.

• We can only use Dynamic Programming whenever the problem exhibits both
optimal substructure and overlapping subproblem properties.
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APPENDIX A

Birth of ‘Dynamic Programming’

“ An interesting question is, ’Where did the name, dynamic programming,
come from?’ The 1950s were not good years for mathematical research.
We had a very interesting gentleman in Washington named Wilson. He
was Secretary of Defense, and he actually had a pathological fear and
hatred of the word, research. I’m not using the term lightly; I’m using
it precisely. His face would suffuse, he would turn red, and he would
get violent if people used the term, research, in his presence. You can
imagine how he felt, then, about the term, mathematical. The RAND
Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, I felt I had to do something to
shield Wilson and the Air Force from the fact that I was really doing
mathematics inside the RAND Corporation. What title, what name,
could I choose? In the first place I was interested in planning, in
decision making, in thinking. But planning, is not a good word for
various reasons. I decided therefore to use the word, ‘programming.’ I
wanted to get across the idea that this was dynamic, this was multistage,
this was time-varying—I thought, let’s kill two birds with one stone.
Let’s take a word that has an absolutely precise meaning, namely
dynamic, in the classical physical sense. It also has a very interesting
property as an adjective, and that is it’s impossible to use the word,
dynamic, in a pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It’s impossible. This, I
thought dynamic programming was a good name. It was something not
even a Congressman could object to. So I used it as an umbrella for
my activities. ”

Richard Bellman, Eye of the Hurricane: An autobiography, 1984

The Bellman-Ford shortest path algorithm presented earlier is named after Richard
Bellman and Lester Ford. In fact that algorithm can be viewed as a dynamic program.

29
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Although the quote is an interesting bit of history it does not tell us much about dynamic
programming. But perhaps the quote will make you feel better about the fact that the
term has little intuitive meaning! In short, the term programming essentially means
planning (like in linear programming) while the word dynamic express the non static
nature of the algorithm design.
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