2D Transformation

Affine Transformation Matrices,
Topics: Homogeneous Coordinates
Date: 28 May, 2021

We begin by representing a point (x, y) in two-dimensional Cartesian coordinate system by a column vector i.e., a 2×1 matrix as $\left[\begin{array}{l}x \\ y\end{array}\right]$.
We recall that a linear expression of the form $a x+b y$ can be written as a matrix multiplication as $\left[\begin{array}{ll}a & b\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]$. This can easily be extended to a system of linear equations.
e.g., if we have the linear equations: we can equivalently express this as:

$$
\begin{aligned}
& x^{\prime}=a_{1} x+b_{1} y \\
& y^{\prime}=a_{2} x+b_{2} y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Q1. What is 2D transformation?
Ans. The 2D geometric transformation means a change in either position or orientation or size or shape of some geometric object like line, polygon etc.

Q2. What is affine transformation?
Ans. A geometric transformation is called affine transformation if it satisfies the following:

- preserves collinearity i.e., all points lying on a line will still lie on a line after the transformation
- ratios of the distances is preserved i.e., ratio of the lengths of two line segments of a line remain same
- parallel lines remain parallel

But it may not preserve angles or distances. Translation, rotation, scaling, reflection, sheer are all affine transformations.

NB: Transformations involving only translation, rotation and scaling also preserves the angle between two lines and the length of a line segment.

Q3. Obtain the transformation matrices for the basic 2D affine transformations.
Ans. For simplicity, assume that the transfomations are applied with origin $(0,0)$ as the reference point.

1. Translation

This is also known as shift or displacement, here we specify two displacement values t_{x} and t_{y} along the two axes. In figure 1 we have a rectangular shape which is translated to its new position by $t_{x}=2, t_{y}=3$. Each point (x, y) of such an shape can be translated as per the following equations:

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned} \quad \text { alternatively we can write: }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

NB: It is worth noting that unlike other transformations discussed below, translation is position independant.

Figure 1: Before and after translation of the rectangle with $t_{x}=2, t_{y}=3$

2. Rotation

For rotation we need a fixed reference point about which the objects are rotated. For simplicity let us take origin $(0,0)$ as that reference point. We also choose counter clockwise (CCW) as default direction of the rotation. Recall that for any point p having Cartesian coordinates (x, y) and polar coordinates (r, θ) we have the following relations:
$\begin{array}{lll}x=r \cos \theta & r=\sqrt{x^{2}+x^{2}} & \text { the distance from the origin } \\ y=r \sin \theta & \theta=\tan ^{-1} \frac{y}{x}\end{array} \quad$ the slope or counter clockwise angle with +ve x-axis
Now, if we apply a rotation α (about the origin) the new point will have the polar coordinates $(r, \theta+\alpha)$ as shown in figure 2. Therefore we have,
$x^{\prime}=r \cos (\theta+\alpha)=r \cos \theta \cos \alpha-r \sin \theta \sin \alpha=x \cos \alpha-y \sin \alpha$
$y^{\prime}=r \sin (\theta+\alpha)=r \sin \theta \cos \alpha+r \cos \theta \sin \alpha=y \cos \alpha+x \sin \alpha$

$$
\text { or, }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Figure 2: After rotation about the origin with $\alpha=30^{\circ}$

3. Scale

A scale value larger than 1 enlarges a shape while scale value lesser than 1 shrinks it. We fix origin as the reference point as can be seen in figure 3 . The scaling equations are given as follows:

$$
\begin{aligned}
x^{\prime} & =x s_{x} \\
y^{\prime} & =y s_{y}
\end{aligned}
$$

Figure 3: After scaling with $s_{x}=3, s_{y}=2$

4. Shear

In shear transformation all points along a given line L remain fixed while other points are shifted parallel to L by a distance proportional to their perpendicular distance from L. It can be thought as an application of some force parallel to L which distorts the shape, where magnitude of the force increases as we move further away from the line L. Figure 4 depicts a sheer along x-axis and y-axis. The combined equations for shear along both axes is given as follows:

$$
\begin{aligned}
& x^{\prime}=x+y s h_{x} \\
& y^{\prime}=x \operatorname{sh}_{y}+y
\end{aligned}
$$

$$
\text { this can be written as, }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Figure 4: After shear with $s h_{x}=1$ (left fig) and $s h_{y}=1$ (right fig)

5. Reflection

Here we consider a line as a reference for the imaginary mirror which reflects an object.
(a) Reflection wrt x -axis: The line equation of x -axis is $y=0$. The translation equations can be written as:
$x^{\prime}=x$
$y^{\prime}=-y$
this can be written as:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]$
(b) Reflection wrt y-axis: The line equation of y-axis is $x=0$. The translation equations can be written as:
$x^{\prime}=-x$
$y^{\prime}=y$
this can be written as:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]$
(c) Reflection wrt origin: Here the considered mirror is a point (origin) instead of a line. The effect is analogous to the upside down image that we see in the physics experiment when light passes through a small pinhole. The translation equations can be written as:
$x^{\prime}=-x$
$y^{\prime}=-y$
this can be written as:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]$
(d) Reflection wrt $y=x$: The translation equations can be written as:
$x^{\prime}=y$
$y^{\prime}=x$
this can be written as:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]$
Figure 5: Reflection with respect to the x-axis $(y=0)$, y -axis $(x=0)$, origin and line $y=x$ respectively

NB: The first three cases is equivalent to a scaling with $s_{y}=-1, s_{x}=-1$ and $s_{x}=s_{y}=-1$ respectively.

