
Introduction to JAVA Programming

Rathindra Nath Dutta

Junior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

June 15, 2018

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 1 / 35

Outline

1 Introduction
Concept of OOP

2 Java Programming: An Overview
History & Overview
Hello World Program
Execution Environment

3 Java Programming: Syntax & Rules
Basic Language Constructs
Array in Java

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 2 / 35

The Object-Oriented Paradigm

Procedural Approach

Data and the functions/methods is kept separately

As the code size increases it becomes unmanageable!

Here emphasize on, how data is to be processed, i.e. methods

It is top-down

OOP

Problem/program is divided into a set of entities called objects

Object = Data + Methods: methods are tightly coupled with data

Here we emphasize on the data rather than methods

Data is often hidden and are accessed/processed via the methods

Objects communicate via message passing through methods

It is bottom-up

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 3 / 35

The Object-Oriented Paradigm

Procedural Approach

Data and the functions/methods is kept separately

As the code size increases it becomes unmanageable!

Here emphasize on, how data is to be processed, i.e. methods

It is top-down

OOP

Problem/program is divided into a set of entities called objects

Object = Data + Methods: methods are tightly coupled with data

Here we emphasize on the data rather than methods

Data is often hidden and are accessed/processed via the methods

Objects communicate via message passing through methods

It is bottom-up

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 3 / 35

The OOP Philosophy I

Abstraction

Idea is to specify only some relevant details & leave the rest hidden

A common way to manage abstraction via hierarchical definition
(easy to manage)

Define the outer functionalities and keep the internal as a black-box
Next define the internal in similar way

This encourages data hiding

The next three principles work together and achieve data
abstraction

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 4 / 35

The OOP Philosophy II

Encapsulation

It binds together the data and methods which operate on that data

It is like a wrapper

The class construct is generally used for encapsulating data and
the method into an object

Figure: Visualization of an object

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 5 / 35

The OOP Philosophy III

Inheritance

Process of acquiring the properties (both data and methods) from
another object

Enables the hierarchical definition of the classes, and hence objects

First we define the common attributes, then specific attributes are
defined as required:

The shapes have area, perimeter, fill color etc.
The circle has radius, but a square has side, whereas a triangle have
three sides!

Figure: Inheritance Hierarchy

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 6 / 35

The OOP Philosophy IV

Polymorphism

A Greek word, which means “many forms”

This feature allow us to define a common interface for some
general class of actions

One of the specific action is chosen depending upon the situation

There are many ways to apply this feature!

Function overloading
Dynamic method dispatch
Generics/Template class etc.

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 7 / 35

The Java Programming Language

Java is realated to C++, which is direct descendent of C

The syntax and many features were taken from C++

Java was developed as response to the shortcomings of C++ and
other languages

We needed coding for the internet which required security and
platform-independency

Now Java can be vaguely thought as “Internet version of C++”

Java influenced the C# language developed by Microsoft

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 8 / 35

The History of Java I

The Sun Microsystems developed a C++ like language named Oak
(1991) headed by James Gosling

Later renamed it as Java (1995)

In 1996 JDK 1.0 was released

1997 JDK 1.1 (many libraries were added)

1998 JDK 1.2, this is called Java 2 (to denote 2nd generation)
(Thread support was added)

1999 Sun Released J2SE and J2EE (still JDK 1.2)

2003 J2SE 1.3 (with JDK 1.3)

2002 J2SE 1.4 (with JDK 1.4)

2004 J2SE 5 (to denote a significant change) (with JDK 1.5)

It introduced Generics, Annotations, Autoboxing & Auto-unboxing,
Enumeration, enhanced for-each loop, varargs, static import,
formatted I/O, concurrency utilities

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 9 / 35

The History of Java II

Next one is called: Java SE 6 (with JDK 1.6)

In 2010 Oracle acquired Sun Microsystems, then released Java SE
7 (with JDK 1.7) (this was another significant improvement)

In 2014 Java SE 8 came with more improvements and features

Current version (as of today) is Java SE 9

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 10 / 35

Java’s Magic: Bytecode

The key that incorporates both security and portability

The output of the java compiler is not some executable code,
rather it is bytecode

Bytecode is highly optimized set of instructions designed to be
executed by the Java runtime system, called Java Virtual Machine
(JVM)

source code
javac−−−→ bytecode

java−−→ execution

The bytecode is fully machine independent code, only machine
specific JVM must be installed – portability

The code is contained(while running) within the JVM, thus can
not affect other parts of the system – security

HotSpot technology was introduced, which provides Just-In-Time
(JIT) compilers for bytecodes.

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 11 / 35

Java Buzzwords

A list of buzzwords which describes the full potential of Java

Simple

Secure

Portable

Object-oriented

Robust

Multithreaded

Architecture-neutral

Interpreted

High performance

Distributed

Dynamic

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 12 / 35

A Hello World Program I

The Code

class Test {

public static void main(String[] args) {

System.out.println("hello world");

}

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 13 / 35

A Hello World Program II

What Else?

A text editor like notepad/gedit/vim/nano

JDK installation for compiling source code

JRE installation for execution(often installs with JDK)
http://www.oracle.com/technetwork/java/javase/

downloads/index.html

An IDE like eclipse (optional)
http://www.eclipse.org/downloads/packages/

eclipse-ide-java-developers/oxygen3a

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 14 / 35

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen3a
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen3a

A Hello World Program III

Executing The Code

Save it as Test.java (file name should be same, and extension
denotes it’s a java source file)

Compile: javac Test.java

It will create a single file named Test.class, which contains the
bytecode (since we had only one class called Test)

Run: java Test

Be careful that we write only the class name containing the main()
method (not the filename with .class extension)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 15 / 35

Anatomy the Hello World program I

class Test {

public static void main(String[] args) {

System.out.println("hello world");

}

}

class keyword is used to define a java class, Test is the class name

public is an access modifier and defines the visibility of a
variable/function/class, public makes things globally accessible

static is an access specifier which allows a class member to be
accessed from outside of the class without having to instantiate an
object of that class, we need it since JVM calls the main() method

The braces {. . . } defines a block of code; the outer braces for the
class definition and the inner braces are for body of the main()
method

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 16 / 35

Anatomy the Hello World program II

The void keyword tells the compiler that the main() method
returns nothing

String[] args is a parameter for the main() method, it an array
of String type objects(i.e. strings) named args (array is nothing
but collection of similar objects)

System is a predefined class in java.lang package

out is the output stream object(also a member of the System
class) which is connected to the console

println() is a built-in method which takes a String object as its
argument and prints it into the console

”hello world” is a String literal passed into the println() method

A statement ends with a semicolon

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 17 / 35

Execution Flow of a Java Program

classloader the subsystem of JVM that is used to
load class files

bytecode verifier checks the code fragments for illegal
code that can violate access right to
objects

interpreter reads bytecode stream then executes the
instructions

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 18 / 35

Java Runtime System I

JVM (Java Virtual Machine) is an abstract machine a
specification that provides runtime environment in which java
bytecode can be executed

JVMs are available for various hardware and software platforms
(i.e. JVM is platform dependent)

Its implementation has been provided by Sun(Oracle) and other
companies; OpenJDK is popular in various linux distributions

The implementation is known as JRE (Java Runtime
Environment).

Whenever we run a java program, an instance of JVM is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 19 / 35

Java Runtime System II

The JVM performs following operation:

Loads code

Verifies code

Executes code

Provides runtime environment

JVM provides definitions for:

Memory area

Class file format

Register set

Garbage-collected heap

Fatal error reporting etc.

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 20 / 35

Java Runtime System III

Figure: Java Runtime System

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 21 / 35

Java Runtime System IV

Classloader is a subsystem of JVM that is used to load class files

Class(Method) Area stores per-class structures such as the
runtime constant pool, field and method data, the code for
methods

Heap is the runtime data area in which objects are allocated

Stack stores frames. It holds local variables and partial results,
and plays a part in method invocation and return

Each thread has a private JVM stack, created at its birth
A new frame is created each time a method is invoked and
destroyed when its method invocation completes

Program Counter Register contains the address of the Java
virtual machine instruction currently being executed

Native Method Stack contains all the native methods used in
the application

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 22 / 35

Java Runtime System V

Execution Engine contains:

A virtual processor

Interpreter: Reads bytecode stream then execute the instructions

Just-In-Time(JIT) compiler: used for improving performance;
JIT compiles parts of the byte code that have similar functionality
at the same time, and hence reduces the amount of time needed
for compilation

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 23 / 35

Basic Syntax

Case Sensitivity − Java is case sensitive, which means identifier
Hello and hello would have different meaning in Java

Class Names − the first letter should be in uppercase; if several
words are used to form a name of the class, each inner word’s first
letter should be in uppercase (camel case)

Method Names − method names should start with a lowercase
letter; camel case is used for longer names

Source File Name − name of the program file should exactly
match with the class name

public static void main(String args[]) − Java program
processing starts from the main() method which is a mandatory
part of every Java program.

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 24 / 35

Identifiers

Java components require names; names used for classes, variables,
and methods are called identifiers

All identifiers should begin with a letter (A-Z or a-z), currency
character ($) or an underscore ()
After the first character, identifiers can have any combination of
characters
A keyword cannot be used as an identifier
Most importantly, identifiers are case sensitive

Examples of legal identifiers: age, $salary, _value, __1_value.

Examples of illegal identifiers: 123abc, -salary.

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 25 / 35

Keywords

List of reserved words in Java

abstract continue for new switch

assert default goto1 package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const1 float native super while

Moreover false, null, true are reserved word for literal values

1not used
Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 26 / 35

Comments

Both single-line and multi-line comments are supported

All characters inside any comment are ignored by Java compiler

public class MyFirstJavaProgram {

/* This is my first java program

* This will print 'Hello World' as the output

* This is an example of multi-line comments

*/

public static void main(String []args) {

// This is an example of single line comment

/* This is also an single line comment */

System.out.println("Hello World");

}

}

Documentation comments /** ... */ facilitates javadoc

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 27 / 35

Variables & Datatypes

A variable is name of reserved area allocated in memory

Each variable is associated with a type when declared
DataType Default Value Size

boolean false 1 bit

char ’\u0000’ 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Java uses Unicode system rather than ASCII code system

Java requires forward declaration of variables

Every non-primitive-type(arrays, String, objects etc.) variables
must be initialized before it is used

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 28 / 35

Scope & Lifetime

A variable is declared within some block enclosed by curly braces

That block defines the scope of the variable, i.e. visibility of that
variable to the other parts of the program

We can not access it outside of its scope

A block also defines the lifetime of a variable, i.e. how long its
value is retained

At the end of its lifetime a variable becomes eligible to be cleared
by the Garbage Collector (GC daemon)

The scope of a class (member) variable is confined to the
corresponding object and its lifetime is same as its container object

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 29 / 35

Type Conversion

Java performs automatic type promotion for an assignment when
destination type is lager in size

int x; short y; double z; x = y; z = x;

Exception: boolean type can not be stored to other types

However down-casting must be done explicitly

int x; double z; x = (int)z;

Explicit casting has other applications like fractional division

(float)3/2

Type promotion in expressions:

All byte, short, and char types are promoted to int

If one of the operands is long then the whole expression is
promoted to long

If one of the operands is float then the entire expression is
promoted to float

If one of the operands is double then result is double

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 30 / 35

Operators

Type Operator

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < < <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ?:

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 31 / 35

Control statements

if-else and switch works just like in C/C++

while, do-while, and for loops are also same as in C/C++

Jump: break and continue is there

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 32 / 35

Arrays

Array is a group of similar typed elements

Randomly accessible via index

Declaring an array: type varName[]; or type[] varName;

Allocating space for the array: varName = new type[size];

int[] dataArray = new int[10];

Java allows both int dataArray[] and int[] dataArray

The one with square brackets after datatype is more readable and
preffered; when declaring multiple arrays it is compact

Initializing an array: double[] arr = {1.9, 3.4, 3.05};

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 33 / 35

An Example

//creating an array

int[] arr = new int[10];

//storing values

for (int i = 0; i < arr.length; i++) {

arr[i] = i;

}

//updating values

for (int i = 0; i < arr.length; i++) {

arr[i]++;

}

//retrieving values

for (int i = 0; i < arr.length; i++) {

System.out.println(arr[i]);

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 34 / 35

foreach loop

Used to iterate over a collections of object, like an array

int[] arr = new int[10];

.

.

.

for (int val : arr) {

System.out.println(val);

}

The loop takes the value of each elements in the set(arr array in this
case) one at each iteration into a (iteration) variable (here val)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 1 June 15, 2018 35 / 35

	Introduction
	Concept of OOP

	Java Programming: An Overview
	History & Overview
	Hello World Program
	Execution Environment

	Java Programming: Syntax & Rules
	Basic Language Constructs
	Array in Java

