
Introduction to JAVA Programming

Rathindra Nath Dutta

Junior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

June 15, 2018

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 1 / 20



Outline

1 Java Programming: Class Fundamentals
Class & Object
Method & Constructor
this Keyword
Object Deletion
Access Controls
Nested Class
About String Class
Command Line Argument
Arrays Revisited

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 2 / 20



Class & Object

An object is an instance of a class

Objects have states and behaviours. Example: A dog has states -
colour, name, breed as well as behaviours – wagging the tail,
barking, eating

A class can be defined as a template/blueprint that describes the
behaviour/state that the object of its type support

Both variables and methods declared inside a class definition are
members of the class

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 3 / 20



An Example

class ABC {

//states or variables

int x;

//behaviours or methods

void foo() {

// function body

}

int bar() {

// function body

}

public static void main(String []args) {

ABC obj; //creating an object

//a variable of type ABC

obj = new ABC(); //instantiating the object

}

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 4 / 20



A closer Look at Object Creation

new

All object variables are just references, initially points to null

The new operator dynamically allocates memory for an object

It translate a logical construct (class) into a physical reality
(object)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 5 / 20



A closer Look at Object Creation

new

All object variables are just references, initially points to null

The new operator dynamically allocates memory for an object

It translate a logical construct (class) into a physical reality
(object)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 5 / 20



A closer Look at Object Creation

new

All object variables are just references, initially points to null

The new operator dynamically allocates memory for an object

It translate a logical construct (class) into a physical reality
(object)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 5 / 20



Understanding Object References

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 6 / 20



Understanding Object References

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 6 / 20



Methods

Declaration and usage of method is similar to C/C++

Methods can have parameters passed into it when called

Methods can return some data; we can write return in methods
with return type void

In Java everything is call-by-copy, for primitives values gets copied
while for objects reference gets copied.

Method overloading

Java allows two or more methods within same class having same
name

They must differ by parameter declaration (type and/or count)

While invoking the parameters determines which version of the
method to load

Its enables compile-time polymorphism

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 7 / 20



Constructor

A constructor initializes an object upon its creation

It has same name as its class

Its syntactically similar to a method, except it does not have any
return type, not even void

It gets immediately called when an object is being instantiated by
the new operator

It implicitly returns the fully instantiated object of the class

Even if we don’t write one explicitly compiler provides a default
(dummy) one

Just like any other method constructors can have parameters and
can be overloaded

Refer to example 2(complex)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 8 / 20



What is this?

this keyword can be used inside any (non-static)method to refer
to the current object

this is always a reference to the object on which the method is
invoked

this is also used to invoke other constructors of the same class,
(reduces redundant code fragments)

Refer to example 2.1(complex)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 9 / 20



Garbage Collection

Objects are dynamically allocated by the new operator, but there
is no delete operator like C++, java handles deallocation
automatically

When no reference to an object exists, the allocated momory space
is eligible for garbage collection

The GC daemon runs sporadically (if at all); its implementation
may vary for different vendor

For the most part, one should not have to think about it while
writing typical programs

One can request JVM to perform garbage collection by executing
System.gc(); but JVM may or may not decide to do a GC at that
point

You may read the discussion at https://stackoverflow.com/
questions/66540/when-does-system-gc-do-anything

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 10 / 20

https://stackoverflow.com/questions/66540/when-does-system-gc-do-anything
https://stackoverflow.com/questions/66540/when-does-system-gc-do-anything


Finalization

Often objects need to perform some action when it is destroyed

Objects may hold non-Java resources such as file handles, which
must be released before the object is destroyed

Similar to destructor in C++, Java provides a finalize()

method which have the following form:

protected void finalize() {...}

Notice that the method has protected access modifier to prevent
accessing it from outside its class

The method is invoked when GC triggers, not when the object
goes out of its scope/lifetime

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 11 / 20



Access Control

As sated earlier classes are used to create data abstraction

Hiding(restricted access) members, both data and methods, is an
important aspect of data abstraction

Java provides four access modifiers:

public members can be accessed from everywhere

default members can be accessed from anywhere
within same package

protected members can be accessed from anywhere
in the same package & within subclasses in other packages

public members can be accessed only within same class

Refer to example 3(stack)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 12 / 20



Access Specifier: Static

A static member can be accessed without creating any object of
that class; most common example is main()

For a static variable all object instances of the class share the
same variable; no individual copy is made - like global variable
within a class

Methods declared static have several restrictions:

can only directly call other static methods & access static data
non-static data & methods must be accessed though some object
(what we do inside main())
cannot refer to this or super in any way

java.lang.Math class provides a large collection static methods

A static block gets executed exactly once when the class is loaded;
generally used for initialization of static fields

Practice exercise: modify the Complex class to implement a counter
which increments whenever a new object is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 13 / 20



Access Specifier: Static

A static member can be accessed without creating any object of
that class; most common example is main()

For a static variable all object instances of the class share the
same variable; no individual copy is made - like global variable
within a class

Methods declared static have several restrictions:

can only directly call other static methods & access static data
non-static data & methods must be accessed though some object
(what we do inside main())
cannot refer to this or super in any way

java.lang.Math class provides a large collection static methods

A static block gets executed exactly once when the class is loaded;
generally used for initialization of static fields

Practice exercise: modify the Complex class to implement a counter
which increments whenever a new object is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 13 / 20



Access Specifier: Static

A static member can be accessed without creating any object of
that class; most common example is main()

For a static variable all object instances of the class share the
same variable; no individual copy is made - like global variable
within a class

Methods declared static have several restrictions:

can only directly call other static methods & access static data
non-static data & methods must be accessed though some object
(what we do inside main())
cannot refer to this or super in any way

java.lang.Math class provides a large collection static methods

A static block gets executed exactly once when the class is loaded;
generally used for initialization of static fields

Practice exercise: modify the Complex class to implement a counter
which increments whenever a new object is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 13 / 20



Access Specifier: Static

A static member can be accessed without creating any object of
that class; most common example is main()

For a static variable all object instances of the class share the
same variable; no individual copy is made - like global variable
within a class

Methods declared static have several restrictions:

can only directly call other static methods & access static data
non-static data & methods must be accessed though some object
(what we do inside main())
cannot refer to this or super in any way

java.lang.Math class provides a large collection static methods

A static block gets executed exactly once when the class is loaded;
generally used for initialization of static fields

Practice exercise: modify the Complex class to implement a counter
which increments whenever a new object is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 13 / 20



Access Specifier: Static

A static member can be accessed without creating any object of
that class; most common example is main()

For a static variable all object instances of the class share the
same variable; no individual copy is made - like global variable
within a class

Methods declared static have several restrictions:

can only directly call other static methods & access static data
non-static data & methods must be accessed though some object
(what we do inside main())
cannot refer to this or super in any way

java.lang.Math class provides a large collection static methods

A static block gets executed exactly once when the class is loaded;
generally used for initialization of static fields

Practice exercise: modify the Complex class to implement a counter
which increments whenever a new object is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 13 / 20



Access Specifier: Static

A static member can be accessed without creating any object of
that class; most common example is main()

For a static variable all object instances of the class share the
same variable; no individual copy is made - like global variable
within a class

Methods declared static have several restrictions:

can only directly call other static methods & access static data
non-static data & methods must be accessed though some object
(what we do inside main())
cannot refer to this or super in any way

java.lang.Math class provides a large collection static methods

A static block gets executed exactly once when the class is loaded;
generally used for initialization of static fields

Practice exercise: modify the Complex class to implement a counter
which increments whenever a new object is created

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 13 / 20



Access Specifier: Final

A field can be declared as final to prevent its content from being
modified; essentially makes it a constant

Making a method final prevents it from being overridden in some
derived class

Such final methods can enhance performance: compiler is free to
make inline calls to them, early binding is possible

Declaring a class as final prevents it from being inherited; it
implicitly declares all of its methods as final too

It is illegal to declare a class as both abstract and final

Refer to example 3(Stack)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 14 / 20



Nested & Inner Classes

A nested class is a class defined within another class

It is possible to declare a class within any block scope

Scope is bounded by the enclosing class/block

Can directly access members (even private ones) of its enclosing
class

Outer class cannot directly access member of the nested class

A nested class can be static (declared with static specifier);
accessing non-static members of its enclosing class must be done
through an object

An inner class is a non-static nested class; it can directly access
all members of the outer class

An anonymous inner class is a inner class having no name; such
classes are widely used for event handling

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 15 / 20



Why Bother?

Followings are compelling reasons for using a nested classes.

A way of logically grouping classes that are only used in one place If a
class is useful to only one other class, then it is logical to
embed it in that class and keep them together. Nesting
such ”helper classes” makes their package more
streamlined.

Increases encapsulation Consider two top-level classes, A and B, where
B needs access to members of A that would otherwise be
declared private. By hiding class B within class A, A’s
members can be declared private and B can still access
them. In addition, B itself can be hidden from the outside
world.

More readable & maintainable code Nesting small classes within
top-level classes places the code closer to where it is used

Refer to example 4(LinkedList)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 16 / 20



The String Class

String literals are also objects of class String

A string object is immutable (constant); whenever we modify we
actually create a new object

Java also provides StringBuffer for string manipulation

+ works as string concatenation operator if either of its two
operands is a string (other one is converted to string using
toString() method is required)

Some useful methods of String class:

boolean equals(str2)

int length()

char charAt(index)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 17 / 20



Command Line Argument

The main() accepts an array of String objects passing
command-line arguments

public static void main(String[] args){...}

The array args is populated by the information passed directly
after the program name on the command line when executed

These information are passed as strings (splitted by whitespace)

The first command-line argument is stored at args[0], the second
at args[1], and so on

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 18 / 20



A Brain Teaser

Write a program to determine whether an integer (passed from
command-line) is even or odd without using any conditional statements
and the using modulo operator

public static void main(String[] args) {

if(args.length<1)

System.out.println("Syntax: java Test <integer>");

else {

int n = Integer.parseInt(args[0]);

String[] str = {"Even", "Odd"};

System.out.println(str[n&1]);

}

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 19 / 20



A Brain Teaser

Write a program to determine whether an integer (passed from
command-line) is even or odd without using any conditional statements
and the using modulo operator

public static void main(String[] args) {

if(args.length<1)

System.out.println("Syntax: java Test <integer>");

else {

int n = Integer.parseInt(args[0]);

String[] str = {"Even", "Odd"};

System.out.println(str[n&1]);

}

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 19 / 20



A Brain Teaser

Write a program to determine whether an integer (passed from
command-line) is even or odd without using any conditional statements
and the using modulo operator

public static void main(String[] args) {

if(args.length<1)

System.out.println("Syntax: java Test <integer>");

else {

int n = Integer.parseInt(args[0]);

String[] str = {"Even", "Odd"};

System.out.println(str[n&1]);

}

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 19 / 20



A Closer Look at Arrays

Multidimensional arrays can be allocated simply writing as follows:

int[][] arr= new int[dim1_size][dim2_size];

Alternatively we can write the following:

arr = new int[rows][];

for (int i = 0; i < dim1_size; i++) {

arr[i] = new int[dim2_size];

}

There is no advantage to individually allocating the second
dimension arrays here

When we allocate dimensions individually, we need not to allocate
the same size(number of elements) for each dimension

A multidimensional array is actually array of arrays, the length of
each array may vary

Refer to example 5(matrix)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 20 / 20



A Closer Look at Arrays

Multidimensional arrays can be allocated simply writing as follows:

int[][] arr= new int[dim1_size][dim2_size];

Alternatively we can write the following:

arr = new int[rows][];

for (int i = 0; i < dim1_size; i++) {

arr[i] = new int[dim2_size];

}

There is no advantage to individually allocating the second
dimension arrays here

When we allocate dimensions individually, we need not to allocate
the same size(number of elements) for each dimension

A multidimensional array is actually array of arrays, the length of
each array may vary

Refer to example 5(matrix)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 20 / 20



A Closer Look at Arrays

Multidimensional arrays can be allocated simply writing as follows:

int[][] arr= new int[dim1_size][dim2_size];

Alternatively we can write the following:

arr = new int[rows][];

for (int i = 0; i < dim1_size; i++) {

arr[i] = new int[dim2_size];

}

There is no advantage to individually allocating the second
dimension arrays here

When we allocate dimensions individually, we need not to allocate
the same size(number of elements) for each dimension

A multidimensional array is actually array of arrays, the length of
each array may vary

Refer to example 5(matrix)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 20 / 20



A Closer Look at Arrays

Multidimensional arrays can be allocated simply writing as follows:

int[][] arr= new int[dim1_size][dim2_size];

Alternatively we can write the following:

arr = new int[rows][];

for (int i = 0; i < dim1_size; i++) {

arr[i] = new int[dim2_size];

}

There is no advantage to individually allocating the second
dimension arrays here

When we allocate dimensions individually, we need not to allocate
the same size(number of elements) for each dimension

A multidimensional array is actually array of arrays, the length of
each array may vary

Refer to example 5(matrix)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 2 June 15, 2018 20 / 20


	Java Programming: Class Fundamentals
	Class & Object
	Method & Constructor
	javathis Keyword
	Object Deletion
	Access Controls
	Nested Class
	About javaString Class
	Command Line Argument
	Arrays Revisited


