
Introduction to JAVA Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

October 9, 2020

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 1 / 12

Outline

1 Package
Basics
Creation
Usage
Access Protection

2 Interfaces
Basics
Usage
Evolving Interfaces

3 Anonymous Inner Class

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 2 / 12

Package

It used to group related classes

These are container for classes, just like a directory containing files

It help resolving name collision of classes

The idea is similar to namespace in C++

Helps writing better maintainable code

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 3 / 12

Creating a Package

Write package packageName; as the first statement in a source file

This places all classes defined in the file into the package

Here package is a keyword

The package name should be written in lower case to avoid conflict
with class names

Packages may be arranged in multilevel, e.g. writing
package a.b.c; creates a package a containing package b which
again contains package c

Java places all classes having the same package name declaration
together

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 4 / 12

Creating a Package

package a.b.c;

class ABC {

public static void main(String[] args) {

//...

}

}

Java manages its packages by creating directories of same names

Here the class file ABC.class should be placed under the directory
structure ./a/b/c/

This can be done automatically by passing -d dest parameter
while compiling

javac -d . ABC.java

After compiling the program can be run by specifying the fully
qualified name of the class

java a.b.c.ABC

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 5 / 12

Creating a Package

package a.b.c;

class ABC {

public static void main(String[] args) {

//...

}

}

Java manages its packages by creating directories of same names

Here the class file ABC.class should be placed under the directory
structure ./a/b/c/

This can be done automatically by passing -d dest parameter
while compiling

javac -d . ABC.java

After compiling the program can be run by specifying the fully
qualified name of the class

java a.b.c.ABC

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 5 / 12

Creating a Package

package a.b.c;

class ABC {

public static void main(String[] args) {

//...

}

}

Java manages its packages by creating directories of same names

Here the class file ABC.class should be placed under the directory
structure ./a/b/c/

This can be done automatically by passing -d dest parameter
while compiling

javac -d . ABC.java

After compiling the program can be run by specifying the fully
qualified name of the class

java a.b.c.ABC

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 5 / 12

Using a Package

To access a class ABC from package a.b.c we have two options

Import the class into current scope and refer it to normally by
specifying its name: import a.b.c.ABC;

Here import is a keyword
We specify a class by its fully qualified name
An import statement must be written immediately after package
declaration and before any classes declarations
Writing import a.b.c.*; will import the whole package

Alternatively we may directly use a class without importing it,
and always refer it by its fully qualified name

Java automatically imports the package java.lang which contains
definitions of many fundamental classes like:
Object, String, Thread etc. ref here for more

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 6 / 12

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/package-summary.html

Using a Package

To access a class ABC from package a.b.c we have two options

Import the class into current scope and refer it to normally by
specifying its name: import a.b.c.ABC;

Here import is a keyword
We specify a class by its fully qualified name
An import statement must be written immediately after package
declaration and before any classes declarations
Writing import a.b.c.*; will import the whole package

Alternatively we may directly use a class without importing it,
and always refer it by its fully qualified name

Java automatically imports the package java.lang which contains
definitions of many fundamental classes like:
Object, String, Thread etc. ref here for more

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 6 / 12

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/package-summary.html

Using a Package

To access a class ABC from package a.b.c we have two options

Import the class into current scope and refer it to normally by
specifying its name: import a.b.c.ABC;

Here import is a keyword
We specify a class by its fully qualified name
An import statement must be written immediately after package
declaration and before any classes declarations
Writing import a.b.c.*; will import the whole package

Alternatively we may directly use a class without importing it,
and always refer it by its fully qualified name

Java automatically imports the package java.lang which contains
definitions of many fundamental classes like:
Object, String, Thread etc. ref here for more

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 6 / 12

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/package-summary.html

Using a Package

To access a class ABC from package a.b.c we have two options

Import the class into current scope and refer it to normally by
specifying its name: import a.b.c.ABC;

Here import is a keyword
We specify a class by its fully qualified name
An import statement must be written immediately after package
declaration and before any classes declarations
Writing import a.b.c.*; will import the whole package

Alternatively we may directly use a class without importing it,
and always refer it by its fully qualified name

Java automatically imports the package java.lang which contains
definitions of many fundamental classes like:
Object, String, Thread etc. ref here for more

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 6 / 12

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/package-summary.html

Access Protection

private default protected public

same class

same package
subclass

same package
non-subclass

different package
subclass

different package
non-subclass

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 7 / 12

Access Protection

private default protected public

same class X
same package

subclass
X

same package
non-subclass

X

different package
subclass

X

different package
non-subclass

X

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 7 / 12

Access Protection

private default protected public

same class X X
same package

subclass
× X

same package
non-subclass

× X

different package
subclass

× X

different package
non-subclass

× X

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 7 / 12

Access Protection

private default protected public

same class X X X
same package

subclass
× X X

same package
non-subclass

× X X

different package
subclass

× × X

different package
non-subclass

× × X

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 7 / 12

Access Protection

private default protected public

same class X X X X
same package

subclass
× X X X

same package
non-subclass

× X X X

different package
subclass

× × X X

different package
non-subclass

× × × X

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 7 / 12

Interfaces

To specify what a class must do, but not how it does that

It is much alike to abstract classes

We use the keyword interface instead of class

All methods are implicitly treated as abstract (no definitions)

Just like an abstract class, an interface also cannot have any
instances

All member variables of an interface are implicitly static and
final

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 8 / 12

Interfaces

To specify what a class must do, but not how it does that

It is much alike to abstract classes

We use the keyword interface instead of class

All methods are implicitly treated as abstract (no definitions)

Just like an abstract class, an interface also cannot have any
instances

All member variables of an interface are implicitly static and
final

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 8 / 12

Interfaces

To specify what a class must do, but not how it does that

It is much alike to abstract classes

We use the keyword interface instead of class

All methods are implicitly treated as abstract (no definitions)

Just like an abstract class, an interface also cannot have any
instances

All member variables of an interface are implicitly static and
final

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 8 / 12

Interfaces

To specify what a class must do, but not how it does that

It is much alike to abstract classes

We use the keyword interface instead of class

All methods are implicitly treated as abstract (no definitions)

Just like an abstract class, an interface also cannot have any
instances

All member variables of an interface are implicitly static and
final

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 8 / 12

Interfaces

To specify what a class must do, but not how it does that

It is much alike to abstract classes

We use the keyword interface instead of class

All methods are implicitly treated as abstract (no definitions)

Just like an abstract class, an interface also cannot have any
instances

All member variables of an interface are implicitly static and
final

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 8 / 12

Using Interfaces

public interface MyInterface {

void foo(); // implicitly abstract

int x = 10; // implicitly final and static

}

Typically an interface is inherited by a class and definitions of the
unimplemented methods are provided

We say a class implements an interface for this

public class MyClass implements MyInterface {

@Override

void foo() {

//method definition

}

}

An implementing class must provide definitions of all
unimplemented methods of the interface

Failing to do so, the class must be declared as abstract

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 9 / 12

Using Interfaces

public interface MyInterface {

void foo(); // implicitly abstract

int x = 10; // implicitly final and static

}

Typically an interface is inherited by a class and definitions of the
unimplemented methods are provided

We say a class implements an interface for this

public class MyClass implements MyInterface {

@Override

void foo() {

//method definition

}

}

An implementing class must provide definitions of all
unimplemented methods of the interface

Failing to do so, the class must be declared as abstract

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 9 / 12

Using Interfaces

Dynamic method dispatch is also possible with interfaces

MyInterface obj = new MyClass(); //allowed

obj.foo(); //calls foo() in MyClass

Java does allow multiple inheritance but it is only restricted to
interfaces

Since interfaces do not have method definitions, there is no
possibility for ambiguity

class MyClass implements Interface1, Interface2 {

//...

}

In JDK8 Java introduced default methods in interfaces along other
features, which can potentially cause ambiguity

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 10 / 12

Using Interfaces

Dynamic method dispatch is also possible with interfaces

MyInterface obj = new MyClass(); //allowed

obj.foo(); //calls foo() in MyClass

Java does allow multiple inheritance but it is only restricted to
interfaces

Since interfaces do not have method definitions, there is no
possibility for ambiguity

class MyClass implements Interface1, Interface2 {

//...

}

In JDK8 Java introduced default methods in interfaces along other
features, which can potentially cause ambiguity

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 10 / 12

Evolving Interfaces

Suppose we have an Interface Intf1 that have been used in many
classes

Now we might want to add some a new method for some other
implementing classes

If we change the definition of Intf1 by adding the method, it will
break the code!

Instead we extend the interface into another interface, Intf2 say,
and use it

interface Intf2 extends Intf1 {

//...

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 11 / 12

Evolving Interfaces

Suppose we have an Interface Intf1 that have been used in many
classes

Now we might want to add some a new method for some other
implementing classes

If we change the definition of Intf1 by adding the method, it will
break the code!

Instead we extend the interface into another interface, Intf2 say,
and use it

interface Intf2 extends Intf1 {

//...

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 11 / 12

Anonymous Inner Class

A class can be nested in another class, and are referred to as inner
and outer class respectively

Similarly an interface can also be nested

An anonymous type is the one having no name specified

Suppose ABC is an interface (or an abstract class) we may write
the following:

ABC obj = new ABC() {

//implementations of all

//unimplemented methods of ABC

}

This is a shorthand, Java implicitly creates an anonymous class
extending ABC [outerClassName+$+serialNumber]

Must provide definitions for all unimplemented methods of ABC

May also put additional code, or override other methods

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 12 / 12

Anonymous Inner Class

A class can be nested in another class, and are referred to as inner
and outer class respectively

Similarly an interface can also be nested

An anonymous type is the one having no name specified

Suppose ABC is an interface (or an abstract class) we may write
the following:

ABC obj = new ABC() {

//implementations of all

//unimplemented methods of ABC

}

This is a shorthand, Java implicitly creates an anonymous class
extending ABC [outerClassName+$+serialNumber]

Must provide definitions for all unimplemented methods of ABC

May also put additional code, or override other methods

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 12 / 12

Anonymous Inner Class

A class can be nested in another class, and are referred to as inner
and outer class respectively

Similarly an interface can also be nested

An anonymous type is the one having no name specified

Suppose ABC is an interface (or an abstract class) we may write
the following:

ABC obj = new ABC() {

//implementations of all

//unimplemented methods of ABC

}

This is a shorthand, Java implicitly creates an anonymous class
extending ABC [outerClassName+$+serialNumber]

Must provide definitions for all unimplemented methods of ABC

May also put additional code, or override other methods

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 4 October 9, 2020 12 / 12

	Package
	Basics
	Creation
	Usage
	Access Protection

	Interfaces
	Basics
	Usage
	Evolving Interfaces

	Anonymous Inner Class

