
Introduction to JAVA Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

October 15, 2020

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 1 / 18

Outline

1 Exception Handling
Basics
Exception Hierarchy
Uncaught Exceptions
try and catch

Nested try Statements
throw Statements
throws Clause
finally Clause
Checked and Unchecked Exceptions
Creating Own Exception Classes
Chained Exceptions

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 2 / 18

Exceptions

An abnormal condition that arises in a code sequence at run time

A run-time anomaly

Traditionally these were dealt manually

Typically some error codes were used

Exceptions handling is OOP’s way of run-time error management

Common exceptions are: division by zero, using out of bounds
indices of an array, accessing members of a null object etc.

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 3 / 18

Exceptions in Java

Exception is an object, describing an exceptional/error condition

When an exceptional condition arises, an object representing that
exception is created and thrown in the method

That method may choose to handle the exception itself, or pass it
on to its calling method

Either way, at some point, the exception is caught and processed

Exceptions can be generated by the Java run-time system itself:
denoting fundamental errors that violate the rules of the Java
language or the constraints of the Java execution environment

They can be also manually generated to report some error
condition to the caller of a method

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 4 / 18

Exceptions in Java

Exception is an object, describing an exceptional/error condition

When an exceptional condition arises, an object representing that
exception is created and thrown in the method

That method may choose to handle the exception itself, or pass it
on to its calling method

Either way, at some point, the exception is caught and processed

Exceptions can be generated by the Java run-time system itself:
denoting fundamental errors that violate the rules of the Java
language or the constraints of the Java execution environment

They can be also manually generated to report some error
condition to the caller of a method

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 4 / 18

Exceptions in Java

Exception is an object, describing an exceptional/error condition

When an exceptional condition arises, an object representing that
exception is created and thrown in the method

That method may choose to handle the exception itself, or pass it
on to its calling method

Either way, at some point, the exception is caught and processed

Exceptions can be generated by the Java run-time system itself:
denoting fundamental errors that violate the rules of the Java
language or the constraints of the Java execution environment

They can be also manually generated to report some error
condition to the caller of a method

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 4 / 18

Exceptions in Java

Exception is an object, describing an exceptional/error condition

When an exceptional condition arises, an object representing that
exception is created and thrown in the method

That method may choose to handle the exception itself, or pass it
on to its calling method

Either way, at some point, the exception is caught and processed

Exceptions can be generated by the Java run-time system itself:
denoting fundamental errors that violate the rules of the Java
language or the constraints of the Java execution environment

They can be also manually generated to report some error
condition to the caller of a method

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 4 / 18

Exception Handling in Java

Java exception handling is managed via five keywords: try, catch,
throw, throws, and finally

Program statements that you want to monitor for exceptions are
contained within a try block

If an exception occurs here, it is thrown automatically

To handle this exception we catch and precess it in a catch block

To manually throw an exception, use the keyword throw

Any exception that is not handled locally, are thrown out of a
method by a throws clause

Any code that absolutely must be executed after a try block
completes is put in a finally block

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 5 / 18

Exception Handling in Java

Java exception handling is managed via five keywords: try, catch,
throw, throws, and finally

Program statements that you want to monitor for exceptions are
contained within a try block

If an exception occurs here, it is thrown automatically

To handle this exception we catch and precess it in a catch block

To manually throw an exception, use the keyword throw

Any exception that is not handled locally, are thrown out of a
method by a throws clause

Any code that absolutely must be executed after a try block
completes is put in a finally block

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 5 / 18

Exception Handling in Java

Java exception handling is managed via five keywords: try, catch,
throw, throws, and finally

Program statements that you want to monitor for exceptions are
contained within a try block

If an exception occurs here, it is thrown automatically

To handle this exception we catch and precess it in a catch block

To manually throw an exception, use the keyword throw

Any exception that is not handled locally, are thrown out of a
method by a throws clause

Any code that absolutely must be executed after a try block
completes is put in a finally block

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 5 / 18

Exception Handling in Java

Java exception handling is managed via five keywords: try, catch,
throw, throws, and finally

Program statements that you want to monitor for exceptions are
contained within a try block

If an exception occurs here, it is thrown automatically

To handle this exception we catch and precess it in a catch block

To manually throw an exception, use the keyword throw

Any exception that is not handled locally, are thrown out of a
method by a throws clause

Any code that absolutely must be executed after a try block
completes is put in a finally block

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 5 / 18

Exception Handling in Java

Java exception handling is managed via five keywords: try, catch,
throw, throws, and finally

Program statements that you want to monitor for exceptions are
contained within a try block

If an exception occurs here, it is thrown automatically

To handle this exception we catch and precess it in a catch block

To manually throw an exception, use the keyword throw

Any exception that is not handled locally, are thrown out of a
method by a throws clause

Any code that absolutely must be executed after a try block
completes is put in a finally block

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 5 / 18

Exception Handling in Java

Java exception handling is managed via five keywords: try, catch,
throw, throws, and finally

Program statements that you want to monitor for exceptions are
contained within a try block

If an exception occurs here, it is thrown automatically

To handle this exception we catch and precess it in a catch block

To manually throw an exception, use the keyword throw

Any exception that is not handled locally, are thrown out of a
method by a throws clause

Any code that absolutely must be executed after a try block
completes is put in a finally block

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 5 / 18

Exception Types

All exception types are subclasses of the built-in class Throwable

Exception is one subclass of Throwable

RuntimeException is an important subclass of Exception

Exceptions of this type are automatically defined for the programs
that you write and include things such as division by zero, invalid
array indexing etc.

Another subclass of Throwable is Error

It defines exceptions that are not expected to be caught under
normal circumstances by your program

It is used by the Java run-time system to indicate errors having to
do with the run-time environment, e.g. stack overflow etc.

These are typically created in response to catastrophic failures
that cannot usually be handled by our program

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 6 / 18

Exception Types

All exception types are subclasses of the built-in class Throwable

Exception is one subclass of Throwable

RuntimeException is an important subclass of Exception

Exceptions of this type are automatically defined for the programs
that you write and include things such as division by zero, invalid
array indexing etc.

Another subclass of Throwable is Error

It defines exceptions that are not expected to be caught under
normal circumstances by your program

It is used by the Java run-time system to indicate errors having to
do with the run-time environment, e.g. stack overflow etc.

These are typically created in response to catastrophic failures
that cannot usually be handled by our program

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 6 / 18

Exception Types

All exception types are subclasses of the built-in class Throwable

Exception is one subclass of Throwable

RuntimeException is an important subclass of Exception

Exceptions of this type are automatically defined for the programs
that you write and include things such as division by zero, invalid
array indexing etc.

Another subclass of Throwable is Error

It defines exceptions that are not expected to be caught under
normal circumstances by your program

It is used by the Java run-time system to indicate errors having to
do with the run-time environment, e.g. stack overflow etc.

These are typically created in response to catastrophic failures
that cannot usually be handled by our program

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 6 / 18

Exception Types

All exception types are subclasses of the built-in class Throwable

Exception is one subclass of Throwable

RuntimeException is an important subclass of Exception

Exceptions of this type are automatically defined for the programs
that you write and include things such as division by zero, invalid
array indexing etc.

Another subclass of Throwable is Error

It defines exceptions that are not expected to be caught under
normal circumstances by your program

It is used by the Java run-time system to indicate errors having to
do with the run-time environment, e.g. stack overflow etc.

These are typically created in response to catastrophic failures
that cannot usually be handled by our program

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 6 / 18

Uncaught Exceptions

What happens when we don’t handle exceptions and write the
following:

class ABC {

public static void main(String[] args) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by
zero, it constructs a new exception object and then throws it

This causes the execution of ABC to stop, because once an
exception has been thrown, it must be caught by an exception
handler and dealt with immediately

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

What happens when we don’t handle exceptions and write the
following:

class ABC {

public static void main(String[] args) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by
zero, it constructs a new exception object and then throws it

This causes the execution of ABC to stop, because once an
exception has been thrown, it must be caught by an exception
handler and dealt with immediately

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

What happens when we don’t handle exceptions and write the
following:

class ABC {

public static void main(String[] args) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by
zero, it constructs a new exception object and then throws it

This causes the execution of ABC to stop, because once an
exception has been thrown, it must be caught by an exception
handler and dealt with immediately

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

But we haven’t supplied any exception handlers here, so the
exception is caught by the default handler provided by the Java
run-time system

Any exception that is not caught by your program will ultimately
be processed by the default handler

The default handler displays a string describing the exception,
prints a stack trace from the point at which the exception
occurred, and terminates the program

We get the following message:

java.lang.ArithmeticException: / by zero

at ABC.main(ABC.java:4)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

But we haven’t supplied any exception handlers here, so the
exception is caught by the default handler provided by the Java
run-time system

Any exception that is not caught by your program will ultimately
be processed by the default handler

The default handler displays a string describing the exception,
prints a stack trace from the point at which the exception
occurred, and terminates the program

We get the following message:

java.lang.ArithmeticException: / by zero

at ABC.main(ABC.java:4)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

But we haven’t supplied any exception handlers here, so the
exception is caught by the default handler provided by the Java
run-time system

Any exception that is not caught by your program will ultimately
be processed by the default handler

The default handler displays a string describing the exception,
prints a stack trace from the point at which the exception
occurred, and terminates the program

We get the following message:

java.lang.ArithmeticException: / by zero

at ABC.main(ABC.java:4)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

class ABC {

static void subroutine() {

int d = 0;

int a = 10 / d;

}

public static void main(String[] args) {

ABC.subroutine();

}

}

Here we will get the following message:

java.lang.ArithmeticException: / by zero

at ABC.subroutine(Exc1.java:4)

at ABC.main(Exc1.java:7)

This is known as Stack Trace, it helps debugging the code

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Uncaught Exceptions

class ABC {

static void subroutine() {

int d = 0;

int a = 10 / d;

}

public static void main(String[] args) {

ABC.subroutine();

}

}

Here we will get the following message:

java.lang.ArithmeticException: / by zero

at ABC.subroutine(Exc1.java:4)

at ABC.main(Exc1.java:7)

This is known as Stack Trace, it helps debugging the code

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 7 / 18

Using try and catch

The default exception handler provided by the Java run-time
system is useful for debugging

Handling exception ourselves not only fixes the error but also
prevents the program from automatically terminating

To guard against and handle a run-time error, simply enclose the
code that you want to monitor inside a try block

Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch

A try and its catch statement form a unit

The scope of the catch clause is restricted to those statements
specified by the immediately preceding try statement

The goal of most well-constructed catch clauses should be to
resolve the exceptional condition and then continue on as if the
error had never happened

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 8 / 18

Using try and catch

The default exception handler provided by the Java run-time
system is useful for debugging

Handling exception ourselves not only fixes the error but also
prevents the program from automatically terminating

To guard against and handle a run-time error, simply enclose the
code that you want to monitor inside a try block

Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch

A try and its catch statement form a unit

The scope of the catch clause is restricted to those statements
specified by the immediately preceding try statement

The goal of most well-constructed catch clauses should be to
resolve the exceptional condition and then continue on as if the
error had never happened

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 8 / 18

Using try and catch

The default exception handler provided by the Java run-time
system is useful for debugging

Handling exception ourselves not only fixes the error but also
prevents the program from automatically terminating

To guard against and handle a run-time error, simply enclose the
code that you want to monitor inside a try block

Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch

A try and its catch statement form a unit

The scope of the catch clause is restricted to those statements
specified by the immediately preceding try statement

The goal of most well-constructed catch clauses should be to
resolve the exceptional condition and then continue on as if the
error had never happened

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 8 / 18

Using try and catch

The default exception handler provided by the Java run-time
system is useful for debugging

Handling exception ourselves not only fixes the error but also
prevents the program from automatically terminating

To guard against and handle a run-time error, simply enclose the
code that you want to monitor inside a try block

Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch

A try and its catch statement form a unit

The scope of the catch clause is restricted to those statements
specified by the immediately preceding try statement

The goal of most well-constructed catch clauses should be to
resolve the exceptional condition and then continue on as if the
error had never happened

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 8 / 18

Using try and catch

class ABC {

public static void main(String args[]) {

try { // monitor a block of code.

int d = 0;

int a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero");

}finally{

System.out.println("Finally");

}

System.out.println("After try/catch");

}

}

finally block is guaranteed to be executed even if an exception is
raised and not caught: for more details refer here

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 8 / 18

https://stackoverflow.com/questions/3861522/do-you-really-need-the-finally-block

Multiple catch Clauses

More than one exception could be raised by a single piece of code

We can specify two or more catch clauses, each catching a
different type of exception

When an exception is thrown, each catch statement is inspected
in order

The first one whose type matches that of the exception is executed

After one catch statement executes, the others are bypassed, and
execution continues after the try/catch block

It is important to remember that exception subclasses must come
before any of their superclasses

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 9 / 18

Multiple catch Clauses

class ABC {

public static void main(String args[]) {

try {

int a = args.length;

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Division by zero");

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Invalid array index");

} catch(Exception e) { // order is important

System.out.println("Other exception");

}

System.out.println("After try/catch");

}

}
Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 9 / 18

Nested try Statements

A try statement can be inside the block of another

Each time a try block is entered, the context of that exception is
pushed on the stack

If an inner try statement does not have a catch handler for a
particular exception, the stack is unwound and the next try
statement’s catch handlers are inspected for a match

This continues until one of the catch statements succeeds, or until
all of the nested try statements are exhausted

If no catch statement matches, then the default handler will
handle the exception

Nesting of try statements can occur in less obvious ways when
method calls are involved, ref: NestedException.java

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 10 / 18

part5_NestedException.java

throw Statements

We were only catching exceptions that are thrown by the Java
run-time

It is possible for your program to throw an exception explicitly,
using the throw statement

throw throwableInstance;

throwableInstance must be an object of type Throwable or a
subclass of Throwable

There are two ways you can obtain a Throwable object: using a
parameter in a catch clause or creating one with the new operator

Flow of execution stops immediately after the throw statement;
any subsequent statements are not executed

The nearest enclosing try block is inspected for a matching catch
statement. If not found, then the next enclosing try statement is
inspected, and so on. If no matching catch is found, the default
exception handler halts the program and prints the stack trace

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 11 / 18

throw Statements

void foo() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

...

try {

foo();

} catch(NullPointerException e) {

System.out.println("Recaught" + e);

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 11 / 18

throws Clause

If a method is capable of causing an exception that it does not
handle, it must specify this behavior so that callers of the method
can guard themselves against that exception

It is done by including a throws clause in the method’s declaration

throw throwableInstance;

A throws clause lists the types of exceptions that a method might
throw

This is necessary for all exceptions, except those of type Error or
RuntimeException, or any of their subclasses

Calling method must surround the call by appropriate try / catch
statement or it must be declared with throws

void foo() throws IllegalAccessException {

throw new IllegalAccessException("demo");

}

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 12 / 18

finally Clause

When exceptions are thrown, execution in a method takes abrupt,
nonlinear path that alters the normal flow through the method

Depending upon how the method is coded, it is even possible for
an exception to cause the method to return prematurely and may
lead to problems: e.g. unclosed files

finally creates a block of code that will be executed after a try
/catch block has completed and before the code following the
try/catch block

finally block will execute whether or not an exception is thrown

If an exception is thrown, the finally block will execute even if
no catch statement matches the exception

When a method is about to return to the caller from inside a
try/catch block, via an uncaught exception or an explicit return
statement, the finally block is also executed just before the
method returns

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 13 / 18

finally Clause

It is useful for closing file handles and freeing up any other
resources that might have been allocated at the beginning of a
method with the intent of disposing of them before returning

The finally clause is optional

However, each try statement requires at least one catch or a
finally clause

for more details refer here and Finally.java

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 13 / 18

https://stackoverflow.com/questions/3861522/do-you-really-need-the-finally-block
part5_Finally.java

Built-in Exceptions

The package java.lang provides several exception classes

The most general of these exceptions are subclasses of the
standard type RuntimeException

These exceptions need not be included in any method’s throws list

These are called unchecked exceptions because the compiler does
not check to see if a method handles or throws these exceptions

Unchecked exceptions defined in java.lang are listed in Table 1

Table 2 lists those exceptions defined by java.lang that must be
included in a method’s throws list if that method can generate one
of these exceptions and does not handle it itself

These are called checked exceptions

In addition to the exceptions in java.lang, Java defines several
more that relate to its other standard packages

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 14 / 18

Built-in Exceptions

The package java.lang provides several exception classes

The most general of these exceptions are subclasses of the
standard type RuntimeException

These exceptions need not be included in any method’s throws list

These are called unchecked exceptions because the compiler does
not check to see if a method handles or throws these exceptions

Unchecked exceptions defined in java.lang are listed in Table 1

Table 2 lists those exceptions defined by java.lang that must be
included in a method’s throws list if that method can generate one
of these exceptions and does not handle it itself

These are called checked exceptions

In addition to the exceptions in java.lang, Java defines several
more that relate to its other standard packages

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 14 / 18

Built-in Exceptions

The package java.lang provides several exception classes

The most general of these exceptions are subclasses of the
standard type RuntimeException

These exceptions need not be included in any method’s throws list

These are called unchecked exceptions because the compiler does
not check to see if a method handles or throws these exceptions

Unchecked exceptions defined in java.lang are listed in Table 1

Table 2 lists those exceptions defined by java.lang that must be
included in a method’s throws list if that method can generate one
of these exceptions and does not handle it itself

These are called checked exceptions

In addition to the exceptions in java.lang, Java defines several
more that relate to its other standard packages

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 14 / 18

Built-in Exceptions

The package java.lang provides several exception classes

The most general of these exceptions are subclasses of the
standard type RuntimeException

These exceptions need not be included in any method’s throws list

These are called unchecked exceptions because the compiler does
not check to see if a method handles or throws these exceptions

Unchecked exceptions defined in java.lang are listed in Table 1

Table 2 lists those exceptions defined by java.lang that must be
included in a method’s throws list if that method can generate one
of these exceptions and does not handle it itself

These are called checked exceptions

In addition to the exceptions in java.lang, Java defines several
more that relate to its other standard packages

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 14 / 18

Unchecked Exceptions

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero

ArrayIndexOutOfBoundsException Array index is out-of-bounds

ArrayStoreException Assignment to an array element of an incompatible type

ClassCastException Invalid cast

EnumConstantNotPresentException An attempt is made to use an undefined enumeration value

IllegalArgumentException Illegal argument used to invoke a method

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked thread

IllegalStateException Environment or application is in incorrect state

IllegalThreadStateException Requested operation not compatible with current thread state

IndexOutOfBoundsException Some type of index is out-of-bounds

NegativeArraySizeException Array created with a negative size

NullPointerException Invalid use of a null reference

NumberFormatException Invalid conversion of a string to a numeric format

SecurityException Attempt to violate security

StringIndexOutOfBounds Attempt to index outside the bounds of a string

TypeNotPresentException Type not found

UnsupportedOperationException An unsupported operation was encountered

Table 1: Unchecked Exceptions defined in java.lang

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 15 / 18

Checked Exceptions

Exception Meaning

ClassNotFoundException Class not found

CloneNotSupportedException Attempt to clone an object that does not implement the Cloneable interface

IllegalAccessException Access to a class is denied

InstantiationException Attempt to create an object of an abstract class or interface

InterruptedException One thread has been interrupted by another thread

NoSuchFieldException A requested field does not exist

NoSuchMethodException A requested method does not exist

ReflectiveOperationException Superclass of reflection-related exceptions

Table 2: Checked Exceptions defined in java.lang

Why not all exceptions are checked?
Unchecked Exceptions — The Controversy

When to choose checked and unchecked exceptions

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 16 / 18

https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://stackoverflow.com/questions/27578/when-to-choose-checked-and-unchecked-exceptions

Creating Exception Subclasses

We might want to create your own exception types to handle
situations specific to your applications

define a subclass of Exception, which is, of course, a subclass of
Throwable

The subclasses don’t need to actually implement anything; it is
their existence in the type system that allows you to use them as
exceptions

The Exception class does not define any methods of its own

Thus, all exceptions, including those that we create, have the
methods defined by Throwable available to them

We can, and sometimes should, override one or more of these
methods to better suit our exception type, e.g. toString()

The complete API documentation is available here: Throwable
and Exception

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 17 / 18

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Throwable.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Exception.html

Chained Exceptions

The chained exception feature allows you to associate another
exception with an exception

This second exception describes the cause of the first exceptional

A method may throw an ArithmeticException because of an
attempt to divide by zero

However, the actual cause of the problem can be that an I/O error
occurred, which caused the divisor to be set improperly

Although the method must certainly throw an
ArithmeticException, we might also want to let the calling code
know that the underlying cause was an I/O error

Chained exceptions let us systematically create this kind of layers
of exceptions

It was introduced in JDK 1.4

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 18 / 18

Chained Exceptions

The chained exception feature allows you to associate another
exception with an exception

This second exception describes the cause of the first exceptional

A method may throw an ArithmeticException because of an
attempt to divide by zero

However, the actual cause of the problem can be that an I/O error
occurred, which caused the divisor to be set improperly

Although the method must certainly throw an
ArithmeticException, we might also want to let the calling code
know that the underlying cause was an I/O error

Chained exceptions let us systematically create this kind of layers
of exceptions

It was introduced in JDK 1.4

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 18 / 18

Chained Exceptions

To allow chained exceptions, the following constructors and
methods are provided by Throwable and Exception

Throwable(Throwable causeExc)

Throwable(String msg, Throwable causeExc)

Throwable initCause(Throwable causeExc)

Throwable getCause()

Exception(String msg, Throwable causeExc)

protected Exception(String msg, Throwable causeExc, boolean enableSuppression, boolean writableStackTrace)

Exception(Throwable causeExc)

Rathindra Nath Dutta (ACMU, ISI) Java Tutorial Part 5 October 15, 2020 18 / 18

	Exception Handling
	Basics
	Exception Hierarchy
	Uncaught Exceptions
	Javatry and Javacatch
	Nested Javatry Statements
	Javathrow Statements
	Javathrows Clause
	Javafinally Clause
	Checked and Unchecked Exceptions
	Creating Own Exception Classes
	Chained Exceptions

