
i

Rathindra Nath Dutta

Computer Graphics using Java
SwingRa

th
in
dr
a
Na
th
 D
ut
ta

ii

Ra
th
in
dr
a
Na
th
 D
ut
ta

Contents

Acknowledgment v

1 Introduction to Java Swing 1

1.1 About Swing . 1

1.2 Components and Containers . 3

1.3 Coding a Swing Application . 5

1.3.1 Coding Techniques and Best Practices 7

2 Event Handling in Swing 9

2.1 The Delegation Event Model . 9

2.2 Different Events in Java . 10

2.3 Coding to Handle Events . 11

2.4 Handling Events From Multiple Sources 13

2.5 Event Handling With Anonymous Inner Classes 16

3 Working with Graphics 19

3.1 Drawing with Graphics . 19

3.1.1 Drawing and Filling Primitive Shapes 19

3.2 Colors . 21

3.2.1 Changing Graphics Color . 21

3.3 Code Example: Translating and Scaling a Line 22

3.4 Paint Mode . 30

3.5 Showing Texts . 30

4 Working with 2D Graphics 31

4.1 The Graphics2D Class . 32

4.1.1 2D Geometric Primitives . 33

A Java Basics 37

A.1 Interfaces . 37

A.2 Inner Class . 39

A.2.1 Anonymous Inner Class . 40

iii

Ra
th
in
dr
a
Na
th
 D
ut
ta

iv Contents

B Mouse and Keyboard Events 43
B.1 Handling Mouse Events . 43

B.1.1 Listening Mouse Events . 44
B.2 Handling Key Events . 45

B.2.1 Listening to Key Events . 45

Bibliography 47

Ra
th
in
dr
a
Na
th
 D
ut
ta

Acknowledgment

SK sir!

v

Ra
th
in
dr
a
Na
th
 D
ut
ta

vi Contents

Ra
th
in
dr
a
Na
th
 D
ut
ta

List of Figures

1.1 Components and Containers in Java Swing 3
1.2 Class hierarchy of components in Java Swing 4
1.3 Class hierarchy of components in Java Swing 5

2.1 Class hierarchy of components in Java Swing 11

4.1 Hierarchy of 2D Geometric Primitives 33

vii

Ra
th
in
dr
a
Na
th
 D
ut
ta

viii List of Figures

Ra
th
in
dr
a
Na
th
 D
ut
ta

List of Tables

1.1 AWT vs Swing . 2

2.1 AWT Events and Listeners . 10

ix

Ra
th
in
dr
a
Na
th
 D
ut
ta

x List of Tables

Ra
th
in
dr
a
Na
th
 D
ut
ta

Listings

1.1 Simple Swing Application . 6
1.2 Standard Coding Style in Practice for Swing Applications 7
2.1 A Simple Event Handling . 13
2.2 Handling Events From Multiple Sources 15
2.3 Event Handling With Anonymous Inner Classes 17
3.1 Translating and Scaling a Line Using Mouse 29
A.1 Interface . 39
A.2 Using an Inner Class in Java . 40

xi

Ra
th
in
dr
a
Na
th
 D
ut
ta

xii Listings

Ra
th
in
dr
a
Na
th
 D
ut
ta

Chapter 1

Introduction to Java Swing

Computer graphics is a field which studies the art of drawing pictures on the
computer screen with the help of programming. With the help of computation
one can create a synthetic digital image. Thus computer graphics deals with
the computer-generated imagery (CGI) in both static (image) or variable (motion
pictures or movies) form.

Computer generated graphics can range from a simple point to complicated
textures to interactive graphical user interface (GUI). Currently many sophisti-
cated software libraries directly allows us to generate visual elements like stylized
text, window, buttons etc and even allows us to manipulate them during execution
thus making the interface more interactive to the user.

1.1 About Swing

Java is one of the popular and yet easy to learn language. It is free and platform
independent. Java is Object-Oriented, and library rich.

Swing was developed to address the deficiencies present in the Java’s original
GUI subsystem: the Abstract Window Toolkit (AWT). The AWT provides a basic
set of controls, visual components like windows, buttons, dialog boxes etc. all of
which had some limitations in their design and/or implementations. One such
limitation is that visual element created using AWT are translated to platform-
specific equivalents. In other words, look and feels of these components is defined
by the underlying platform (mainly by the OS). Even the behavior of some com-
ponents vary from one platform to another. This violates Java’s core philosophy
of platform-independence.

Before going any further it is absolute necessary to state that: although Swing
was developed to eliminate the inherent limitations of AWT, Swing does not re-
places it. Instead, Swing is built on top of AWT. For example, the event handling
in Swing still uses the mechanisms implemented in AWT. Swing also introduces
some new components apart from existing ones in AWT.

Swing solves the limitations present in AWT by its two key features. First
one is Swing components are lightweight. AWT uses implementation code of the

1

Ra
th
in
dr
a
Na
th
 D
ut
ta

2 Chapter 1. Introduction to Java Swing

native platform to display its components. Hence AWT components are consid-
ered heavyweight. In contrast to this, Swing components are written entirely in
Java. Therefore, Swing components look and feel and most importantly behave
in consistently across all platforms. Secondly, Swing supports pluggable look and
feel. This separates the look and feel of a component from the logic code that uses
this components. It allows us to create custom look and feel as well as we can
dynamically modify look and feel of a component even at runtime.

Swing closely follows the MVC design pattern 1. MVC or Model-View-Controller
framework defines Models, Views, Controller and makes their logic independent
of each other. Model corresponds to the state of a component (e.g. in case of
check-box, whether it is checked or not). View deals with how a component is
displayed on the screen. View always reflect current state of the model for a com-
ponent. Controller determines how a component reacts to some user interaction
(e.g. in case of check-box, clicking on it updates its model, i.e. toggles its state
between checked and unchecked). As soon as the state changes in Model, View
almost instantaneously reflects the same on the screen.

Table 1.1 summarizes the above discussion. Beginning with Java 1.2, Swing
was fully integrated into Java as part of the Java Foundation Classes (JFC) 2.

Table 1.1: AWT vs Swing

AWT Swing
components are platform-dependent components are platform-independent

components are heavyweight components are lightweight
doesn’t support pluggable look and feel does support pluggable look and feel
provides less components than Swing provides more 3 powerful components

doesn’t follows MVC framewwork based on MVC pattern

1Note that Swing does not implement the classical MVC model.
2Java Foundation Classes, encompass a group of features for building GUIs and adding rich

graphics functionality and interactivity to Java applications. It is defined as containing: Swing
GUI Components, Pluggable Look-and-Feel Support, Accessibility API (for enabling assistive
technologies, such as screen readers and Braille displays, to get information from the user in-
terface), Java 2D API (for high-quality 2D graphics, text, and images), Internationalization
(support for worldwide languages event those uses thousands of different characters, such as
Japanese, Chinese, or Korean).

3More than 250 new classes and 75 interfaces were introduced in Swing; twice as many as was
in AWT.

Ra
th
in
dr
a
Na
th
 D
ut
ta

1.2. Components and Containers 3

1.2 Components and Containers

A Swing GUI is made up of two key items: components and containers. In Swing
almost every class name begins with the letter ’J’ to denote they are Swing version
of an old AWT class. Figure 1.14,5 gives an overview of available components and
containers classes in Java. As it is evident from the class hierarchy in figure 1.1 a
container is nothing but a special type of components and the distinction is based
on their intended purpose.

Figure 1.1: Components and Containers in Java Swing

Components

In Swing every components are derived from the JComponent class which inherits
the AWT Container (and thus also Component). Figure 1.2 covers most of the
components available in Swing.

Containers

Swing defines four top-level containers: JFrame, JApplet, JWindow, and JDialog

as shown in the figure 1.3. These classes inherit from AWT Container (and thus
also Component) and not from JComponent, thus they are heavyweight. as the
name suggest these containers are not contained in any other container, and stays

4Like any other class in Java the Component class also implicitly inherits the Object class.
5The Swing class names, the ones staring with ’J’ are written in boldface, and the rest classes

are part of AWT.

Ra
th
in
dr
a
Na
th
 D
ut
ta

4 Chapter 1. Introduction to Java Swing

Figure 1.2: Class hierarchy of components in Java Swing

at the top-level of the containment hierarchy of the GUI design. For applications
we commonly use JFrame whereas JApplet is used for applets6.

Swing also defines a second type of containers that are lightweight as they in-
herits from JComponent. JPanel is one such popular container. These lightweight
containers are used to contain other components and they itself in turn contained
within some top-level container.

Packages

All of the Swing components and containers are organized under the main package7

called javax.swing. For some functionalities we may also need to import from
java.awt package.

6An applet is a special Java program that is embedded in a web page and thus runs in the
Web Browser at client side.

7A Java package is a group of similar types of classes, interfaces and sub-packages. Packages
are generally named in reverse domain notation (e.g. org.apache.commons.math) and reflects
the directory hierarchy.

Ra
th
in
dr
a
Na
th
 D
ut
ta

1.3. Coding a Swing Application 5

Figure 1.3: Class hierarchy of components in Java Swing

1.3 Coding a Swing Application

Consider that we want to build an application that shows the text ”Hello World”
on a window. As mentioned earlier JFrame is used to create window based appli-
cations. Therefore, we need to create an object of JFrame.

JFrame myFrame = new JFrame();

Also we need another object of JLabel to display our text. Here we can di-
rectly pass the require text to be shown as a parameter in the constructor, which
implicitly invokes the setText() method of the label.

JLabel myLabel = new JLabel("Hello World");

Now we need to put our JLabel object to our top-level container myFrame,
the object of JFrame class. The add() method of any container obejct puts the
component myLabel, passed as an argument, into the content pane of top-level
container myFrame.

myFrame.add(myLabel);

We also need to set the frame size so that our window has the required
width(200) and height(100).

myFrame.setSize(200, 100);

By default, a newly created JFrame object does not show up any window on
the screen, the window stays hidden. So we need to make it visible.

myFrame.setVisible(true);

Ra
th
in
dr
a
Na
th
 D
ut
ta

6 Chapter 1. Introduction to Java Swing

Finally, we might want to use the close button (at the top right corner of the
window) to close and dispose the window.

myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Here EXIT_ON_CLOSE is a integer constant defined in the JFrame class a static8

member, so we can directly access it from the class name itself.
Finally, we put all these inside a main() method of a demo class9 SwingTest

as shown in listing 1.1.

SwingTest.java

1 import javax.swing.JFrame;

2 import javax.swing.JLabel;

3

4 public class SwingTest {

5 public static void main(String[] args) {

6 JFrame myFrame = new JFrame();

7 JLabel myLabel = new JLabel("Hello World");

8 myFrame.add(myLabel);

9 myFrame.setSize(200, 100);

10 myFrame.setVisible(true);

11 myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

12 }

13 }

Listing 1.1: Simple Swing Application

The output is shown below.

8An object member defined in a class must be accessed (if permitted) through an intance of
that class. In contrast, a static member (a member with the static access modifier keyword)
behaves as a class member and thus directly accessible thought the class name itself, no instan-
tiation required. This is why main() method is declared as static. Another example will be the
methods available in the Math class.

9In Java class name should start with a capital letter, and member name should start with a
small letter. They both generally uses camel case to increase readability. Java also recommends
that the file name also should be same as the public class name.

Ra
th
in
dr
a
Na
th
 D
ut
ta

1.3. Coding a Swing Application 7

1.3.1 Coding Techniques and Best Practices

Although, the above Java code does serves the intended purpose, it is not a good
coding style to follow for Swing application development. The following code
depicts the standard coding practice.

MyFrame.java

1 import javax.swing.JFrame;

2 import javax.swing.JLabel;

3

4 public class MyFrame extends JFrame {

5 JLabel myLabel;

6

7 public MyFrame() { //initialize the frame

8 myLabel = new JLabel("Hello World");

9 this.add(myLabel);

10 this.setSize(200, 100);

11 this.setVisible(true);

12 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

13 }

14

15 public static void main(String args[]) {

16 new MyFrame(); // instantiate our frame

17 }

18 }

Listing 1.2: Standard Coding Style in Practice for Swing Applications

The first main change is that we are extending the JFrame class to create
our own frame class. This class will contains all the components to be added on
the frame as its members. In this example we have only a single component, a
label, with the default access modifier10. One can use different access modifiers
as required. Secondly, we are initializing our components and placing them onto
our frame with in the constructor of our frame class. In this way user of MyFrame
class is relieved from the burden of declaring the specifics of the frame and can
simply instantiate the frame. If required, certain things can easily be customizable

10Java has four access modifiers: private (accessible from only within that class), protected
(same as private but inheritable, thus accessible from only within that class and its subclasses),
default (its the default one, accessible from all classes only within same package), and public

accessible from anywhere within that application

Ra
th
in
dr
a
Na
th
 D
ut
ta

8 Chapter 1. Introduction to Java Swing

by passing arguments inside the constructor and utilizing them in order to meet
specific user requirements. In this example, we have put the main() method inside
our frame class, but in many cases a separate driver class is created for the main
method.

Ra
th
in
dr
a
Na
th
 D
ut
ta

Chapter 2

Event Handling in Swing

Suppose we want develop an application which has a text-box a button and a label.
When a user write something in the text-box and click on that button, the text is
copied on to the label. In order to achieve this effect, we need to somehow specify
the behavior of the button. This is achieved though event handling1 in Java.

In simple words an event resembles happening of something. Like many other
programming languages, in Java occurrence on a event causes some object to
chance its state. In Java clicking mouse button, dragging mouse, pressing a key
on keyboard etc. are considered as events.

2.1 The Delegation Event Model

Starting from Java 1.1, a new and better event handling approach was introduced.
Here events are handled based on delegation event model, which is a standard and
consistent mechanism to generate and process those events. A source generates an
event and sends that to one or more listener(s). The job of a listener is to simply
wait until it receives an event. Once an event is received, the listener processes it
and returns.

The beauty of this approach is that, the event handling (processing) mecha-
nism is completely separate from the event generation logic, and thus independent
of each other. Thus an element of the user interface is able to ‘delegate’2 the
processing of an event to a separate piece of code

In this model, an event is an object that describes change in state of the event
source. This generally corresponds to some user activity like click, key press etc.
A source must register at least some listener to listen for the desired event. This
event handling flow is depicted later in figure ??.

1Here we will focus on the GUI based events only. The event handling not related to GUI
systems is done in similar fashion.

2Delegate(noun): to give authority or control to someone, entrust (a task or responsibility)
to another person

9

Ra
th
in
dr
a
Na
th
 D
ut
ta

10 Chapter 2. Event Handling in Swing

Table 2.1: AWT Events and Listeners

Event class User Action/ Cause Listener Interface

ActionEvent
button press, double

click, selecting a menu
item

ActionListener

AdjustmentEvent scroll bar manipulated AdjustmentListener

ComponentEvent
position, size, or

visibility of a componet
modified

ComponentListener

ContainerEvent
addition or removal of a

component from a
container

ContainerListener

FocusEvent
getting keyboarad focus

or defocued
FocusListener

ItemEvent
check-box or cheackable
menu item clicked or a

list item is clicked
ItemListener

KeyEvent keyborad input KeyListener

MouseEvent
mouse click, drag, move,

hover etc
MouseListener,

MouseMotionListener
MouseWheelEvent mouse wheel rotated MouseWheelListener

TextEvent
value of the text field or

text area changed
TextListener

WindowEvent

activating, deactivating,
opening, closing,

iconfication,
deiconification, quiting

a window

WindowListener,
WindowFocusListener

2.2 Different Events in Java

Java provides a set of event classes and their corresponding listeners interfaces3

in the package java.awt.event, few of which are described below. As shown in
figure 2.1 all these event classes are part of AWT and inherits from EventObject

of java.util. Although these classes and interfaces covers most of the events and
their handling mechanisms, one can also define custom events and their listeners.
Table 2.1 lists different AWT event classes, along with the user interactions that
causes that particular event. The table also lists corresponding listener classes

3See Appendix A.1 for more detials.

Ra
th
in
dr
a
Na
th
 D
ut
ta

2.3. Coding to Handle Events 11

that must be registered by the source in order to listen for that particular event.

Figure 2.1: Class hierarchy of components in Java Swing

2.3 Coding to Handle Events

Consider the previous example, where we wanted to click a button to copy the
text from a text-box into a label. Since we want to handle the button click
event we can use the ActionEvent class. The source(button in this case) first
registers a ActionListener for this event. To register this listener we need to
call addActionListener() method as pass an ActionListener instance. We can
make our MyFrame class to implement the ActionListener interface and pass
its current instance as an action listener object into the addActionListener()

method as follows:

JButton button = new JButton("Copy");

button.addActionListener(this);

ActionListener interface has a single unimplemented method actionPerformed()

in it, which now needs to be implemented in our MyFrame class. Whenever the
button click action is performed this method will automatically be triggered.

@Override

public void actionPerformed(ActionEvent e) {

Ra
th
in
dr
a
Na
th
 D
ut
ta

12 Chapter 2. Event Handling in Swing

//code to be executed when an ActionEvent occurs

}

The @Override is an annotation to indicate that this method declaration is in-
tended to override a method declaration in a supertype. It is not required to put
this annotation before a overridden method declaration. If a method is annotated
with this annotation type, compilers are required to generate an error message
unless there exists an override-able method in the superclass.

Since we wanted to copy the text from our text-box into our label we may write
the following inside our actionPerformed() method.

label.setText(textbox.getText());

By default a JFrame instance has BorderLayout4 manager set on it. So we
will use an instance of JPanel which has the FlowLayout5 as its default layout
manager6. Finally, we put these all together as shown in listing 2.1.

MyFrame.java

1 import java.awt.event.ActionEvent;

2 import java.awt.event.ActionListener;

3

4 import javax.swing.JButton;

5 import javax.swing.JFrame;

6 import javax.swing.JLabel;

7 import javax.swing.JPanel;

8 import javax.swing.JTextField;

9

10 public class MyFrame extends JFrame implements ActionListener {

11 JPanel panel;

12 JTextField textbox;

13 JButton button;

14 JLabel label;

15

16 public MyFrame() {

4BorderLayout divides the content pane into five sections: TOP, BOTTOM, LEFT, RIGHT,
and CENTER. Components added to a container having BorderLayout can be only aligned to
these five regions.

5FlowLayout simply lays out components in a single row from left to right, starting a new
row if its container is not sufficiently wide and the rows are filled from top to bottom.

6Java has various layouts for variour needs. For example GridLayout can be used to organize
buttons in a calculator. All layouts implement the LayoutManagaer interface. For more details
refer to: https://ratcoinc.github.io/Java_Swing/oracle_tutorial/uiswing/layout/

Ra
th
in
dr
a
Na
th
 D
ut
ta

https://ratcoinc.github.io/Java_Swing/oracle_tutorial/uiswing/layout/

2.4. Handling Events From Multiple Sources 13

17 panel = new JPanel();

18

19 textbox = new JTextField(10); //sets the width to 10

columns/characters↪→

20 panel.add(textbox);

21

22 button = new JButton("Copy");

23 panel.add(button);

24 button.addActionListener(this);

25

26 label = new JLabel();

27 panel.add(label);

28

29 this.add(panel);

30

31 this.setSize(400, 100);

32 this.setVisible(true);

33 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

34 }

35

36 public static void main(String[] args) {

37 new MyFrame();

38 }

39

40 @Override

41 public void actionPerformed(ActionEvent e) {

42 label.setText(textbox.getText());

43 }

44 }

Listing 2.1: A Simple Event Handling

2.4 Handling Events From Multiple Sources

Consider another example, where we have to change a text color. We have two
buttons one to change the color to red another for blue. We can create a class
which extends JFrame and implements ActionListener as well as override the
actionPerformed() method as we did in the previous example. Both buttons
must register a listener. We can use current instance of our class as the listener for

Ra
th
in
dr
a
Na
th
 D
ut
ta

14 Chapter 2. Event Handling in Swing

both. Now clicking on either of the button invokes the same actionPerformed()

method. Thus, we need some way to distinguish between the two button clicks. We
can use the getActionCommand()7 method of the action event, and test the com-
mand name against the label of the button as shown below. The Color class pro-
vides some predefined instances for the common colors like Color.RED, Color.BLUE
etc. The Color class is described later in section 3.2.

@Override

public void actionPerformed(ActionEvent ae) {

if (ae.getActionCommand().equalsIgnoreCase("red")) {

label.setForeground(Color.RED);

} else {

label.setForeground(Color.BLUE);

}

}

Alternatively, we can use the getSource()8 of the action event and compare it
against the available sources(buttons in this case).

@Override

public void actionPerformed(ActionEvent ae) {

if (ae.getSource() == red) {

label.setForeground(Color.RED);

} else {

label.setForeground(Color.BLUE);

}

}

Finally, we put all these together into listing 2.2.

MyFrame.java

1 import java.awt.Color;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4

5 import javax.swing.JButton;

6 import javax.swing.JFrame;

7 import javax.swing.JLabel;

7getActionCommand() returns the command string associated with this action. It is compo-
nent specific and should be carefully used.

8getSource() returns the object on which the Event initially occurred. It is more general
and preferable.

Ra
th
in
dr
a
Na
th
 D
ut
ta

2.4. Handling Events From Multiple Sources 15

8 import javax.swing.JPanel;

9 public class MyFrame extends JFrame implements ActionListener {

10 JPanel panel;

11 JButton red, blue;

12 JLabel label;

13

14 public MyFrame() {

15 panel = new JPanel();

16

17 red = new JButton("Red");

18 panel.add(red);

19 red.addActionListener(this);

20 blue = new JButton("Blue");

21 panel.add(blue);

22 blue.addActionListener(this);

23

24 label = new JLabel("This is a text");

25 panel.add(label);

26

27 this.add(panel);

28 this.pack();

29 this.setVisible(true);

30 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

31 }

32

33 public static void main(String[] args) {

34 new MyFrame();

35 }

36

37 @Override

38 public void actionPerformed(ActionEvent ae) {

39 if (ae.getSource() == red) {

40 label.setForeground(Color.RED);

41 } else {

42 label.setForeground(Color.BLUE);

43 }

44 }

45 }Ra
th
in
dr
a
Na
th
 D
ut
ta

16 Chapter 2. Event Handling in Swing

Listing 2.2: Handling Events From Multiple Sources

2.5 Event Handling With Anonymous Inner Classes

Being an inner class, any anonymous inner class has access to all of the members
of its enclosing class. Moreover, any method definition provided inside the body
of the anonymous inner class is local to the instance created by that expression.
This becomes very handy when using event listeners as shown below.

MyFrame.java

1 import java.awt.Color;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4

5 import javax.swing.JButton;

6 import javax.swing.JFrame;

7 import javax.swing.JLabel;

8 import javax.swing.JPanel;

9

10 public class MyFrame extends JFrame {

11 JPanel panel;

12 JButton red, blue;

13 JLabel label;

14

15 public MyFrame() {

16 panel = new JPanel();

17 red = new JButton("Red");

18 panel.add(red);

19 red.addActionListener(new ActionListener() {

20 @Override

21 public void actionPerformed(ActionEvent e) {

22 label.setForeground(Color.RED);

23 }

24 });

25 blue = new JButton("Blue");

26 panel.add(blue);

27 blue.addActionListener(new ActionListener() {

28 @Override

29 public void actionPerformed(ActionEvent e) {
Ra
th
in
dr
a
Na
th
 D
ut
ta

2.5. Event Handling With Anonymous Inner Classes 17

30 label.setForeground(Color.BLUE);

31 }

32 });

33

34 label = new JLabel("This is a text");

35 panel.add(label);

36

37 this.add(panel);

38 this.pack();

39 this.setVisible(true);

40 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

41 }

42

43 public static void main(String[] args) {

44 new MyFrame();

45 }

46 }

Listing 2.3: Event Handling With Anonymous Inner Classes

Here we are using anonymous inner class to create instances of ActionListener
interface for our two buttons. Recall that the addActionListener() method
requires an ActionListener instance as its argument. Previously we were making
our frame class to implement the listener so that we can pass this as the argument
to addActionListener(). Instead, here we are creating anonymous inner class
instances for the listener and passing that as the argument. In this way the design
also becomes simpler. Each anonymous inner class instance of ActionListener
has its own addActionListener() method where we have put the code for action
to be performed corresponding to that button.

Since, each instance of ActionListener is registered only to a single source(a
button in this example), we no longer need to worry about the source of event, as
we did earlier. Thus, using anonymous inner class has become a standard practice
specially for handling events from multiple sources.

Further Reading

There are many type of events only some of which are discussed in this document.
To know more about them you may refer to chapter 23 of [Schildt, 2011] and http:

//ratcoinc.github.io/Java_Swing/oracle_tutorial/uiswing/events/.Ra
th
in
dr
a
Na
th
 D
ut
ta

http://ratcoinc.github.io/Java_Swing/oracle_tutorial/uiswing/events/
http://ratcoinc.github.io/Java_Swing/oracle_tutorial/uiswing/events/

18 Chapter 2. Event Handling in Swing

Ra
th
in
dr
a
Na
th
 D
ut
ta

Chapter 3

Working with Graphics

Java AWT provides a rich set of graphics APIs that serves almost every need of a
UI programmer. Swing uses the same graphics methods available in AWT. Every
component in Swing has its own graphics context. Drawing(output using graphics
context) on any component is done relative to its top-left corner. The top-left
cornet is considered origin (0, 0), going down increases x-coordinate and going left
increases y-coordinate.

3.1 Drawing with Graphics

Graphics context of any component can be acquired by calling getGraphics()

method of that component. The getGraphics() method return an instance of the
Graphics class defined in java.awt package.

The repaint() method is provided by any component inhering Component

class from java.awt. The repaint() method repaints this component by calling
either paint() method (for a lightweight component) or update() (for a heavy-
weight component) as soon as possible. Both paint() and update() methods are
get invoked with the current graphics context as their parameter.

In swing, every component inherits from the JComponent, which provides a
paintComponent() method. It is recommended to override paintComponent()

instead of paint().

3.1.1 Drawing and Filling Primitive Shapes

The Graphics class defines a number of drawing methods to draw and fill different
basic shapes discussed below. All these objects are drawn or filled with the current
color of the graphics context, which is black by default. The component’s dimen-
sion defines the viewport and any object having portion outside the boundary of
the component gets automatically clipped out.

19

Ra
th
in
dr
a
Na
th
 D
ut
ta

20 Chapter 3. Working with Graphics

Lines

A line segment is defined by its two end points (x1, y1) and (x2, y2). Such a line
can be drawn by void drawLine(int x1, int y1, int x2, int y2) method.

Rectangles

A rectangle can be defined by specifying its top-left corner along with its width
and height. Such a rectangle can be drawn or filled by the following methods

void drawRect(int top, int left, int width, int height)

void fillRect(int top, int left, int width, int height)

If the width and height value are same then the drawn rectangle is a square.

Ovals

An ellipse can be drawn or filled by the following methods

void drawOval(int top, int left, int width, int height)

void fillOval(int top, int left, int width, int height)

The ellipse is actually fit into the rectangle specified by the parameters. If the
width and height value are same then the drawn ellipse is actually a circle.
Unfortunately, there is no such method available to draw ia point, fillOval()
method is often used to plot a point.

Arcs

A rectangle can be defined by specifying its top-left corner along with its width
and height. Such a rectangle can be drawn or filled by the following methods

void drawArc(int x, int y, int width, int height,

int startAngle, int arcAngle)

void filleArc(int x, int y, int width, int height,

int startAngle, int arcAngle)

They draw the outline of a circular or elliptical arc within the specified rectangle.
The resulting arc begins at startAngle and extends for arcAngle degrees. Angles
are interpreted such that 0 degrees is at the 3 o’clock position. A positive value
indicates a counter-clockwise rotation while a negative value indicates a clockwise
rotation. The center of the arc is the center of the rectangle specified.

Ra
th
in
dr
a
Na
th
 D
ut
ta

3.2. Colors 21

Polygons

A polygon is a bounded region which can be difed by its bounding lines. Alter-
natively, a set of point can also define a polygon, where each consecutive pair of
points denoted a bounding line of the polygon. Any arbitrary shaped polygon can
be drawn or filled by the following methods

void drawPolygon(int xPoints[], int yPoints[], int nPoints)

void fillPolygon(int xPoints[], int yPoints[], int nPoints)

Here the points are denoted by (xPoints[i], yPoints[i]) with 0 ≤ i < nPoints.

3.2 Colors

The Color class is defined in the java.awt package, and uses the sRGB model
to render the colors. The Color class contains some predefined instances common
colors (e.g. instance for red color can be accessed by writing Color.RED). These
instances are defined as static(class members) and final(constant) with the
public access modifier. One can define any color using the one of the following
constructors.

Color c = new Color(int r, int g, int b);

Color c = new Color(int r, int g, int b, int a);

The parameters r, g, and b corresponds to the color values of Red, Green, and Blue
respectively. The parameter a denotes alpha value which is used for transparency.

Color class provides several methods to create color using HSB color model,
or to get a particular color component, or to convert between RGB and HSB
color models etc. The full documentation of Color class is available at https:

//ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Color.html

3.2.1 Changing Graphics Color

The color of the graphics context for current component can be changed by the
following method.

void setColor(Color c)

The next shape drawn on this graphics context will have the specified color
(already draws shaped won’t be affected). There is also another method to retrieve
current color the graphics context.

Color getColor()

Ra
th
in
dr
a
Na
th
 D
ut
ta

https://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Color.html
https://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Color.html

22 Chapter 3. Working with Graphics

3.3 Code Example: Translating and Scaling a

Line

The above discussions can be better explained by the following example. This
example also demonstrates usage of various mouse events and their listeners.

Suppose we want develop an application that can draw a line based on user
input. Then it allows to select the line and drag it on the screen using mouse and
it also allows to zoom/shrink the line by scrolling the mouse wheel.

As it clearly evident that here the we need to save the user inputs (for the line)
in order to transform it later. We can think that the line as an object that gets
updated whenever the line is transformed (translated or scaled). So, we need a
class for this as shown below.

MyLine.java

1 import java.awt.Color;

2 import java.awt.Graphics;

3 import java.awt.Point;

4

5 public class MyLine {

6 Point start, end;

7 Color c;

8

9 public MyLine(int startX, int startY, int endX, int endY,

Color c) {↪→

10 this.start = new Point(startX, startY);

11 this.end = new Point(endX, endY);

12 this.c = c;

13 }

14

15 public void translate(int tx, int ty) {

16 //A line can be translated by simply translating its

two extremities↪→

17 start.x += tx;

18 start.y += ty;

19 end.x += tx;

20 end.y += ty;

21 }

22

23 public void scale(double sx, double sy) {
Ra
th
in
dr
a
Na
th
 D
ut
ta

3.3. Code Example: Translating and Scaling a Line 23

24 //here scaling is done with respect to the start point

25 int x = start.x, y = start.y;

26 translate(-x, -y); //translate to (0,0)

27 //scale the line

28 //since start is at (0,0) scaling wont have any effect

on it, only the end point needs to be updated↪→

29 //end.x *= sy is syntactic sugar for end.x =

(int)(end.x * sy)↪→

30 end.x *= sx;

31 end.y *= sy;

32 translate(x, y); //back translate

33 }

34

35 /* This method tests whether the given point

36 * is on the line segment or not

37 *

38 * There are many ways to check that

39 * one simple way to test is by calculating Euclidean

distances↪→

40 * iff dist(start,p) + dist(p,end) = dist(start,end)

41 * then the pont p is on the line segment

42 */

43 public boolean doesContain(Point p) {

44 double d1,d2,d3;

45 d1 = Math.sqrt((start.x - p.x)*(start.x - p.x) +

(start.y - p.y)*(start.y - p.y));↪→

46 d2 = Math.sqrt((end.x - p.x)*(end.x - p.x) + (end.y -

p.y)*(end.y - p.y));↪→

47 d3 = Math.sqrt((start.x - end.x)*(start.x - end.x) +

(start.y - end.y)*(start.y - end.y));↪→

48 return d1+d2==d3 ? true : false;

49 }

50

51 public void draw(Graphics g) {

52 g.setColor(c);

53 g.drawLine(start.x, start.y, end.x, end.y);

54 }

55 }

This class uses the Point class provided by AWT, which simply represents a
point located at (x, y). This class also defines a few methods that will be required

Ra
th
in
dr
a
Na
th
 D
ut
ta

24 Chapter 3. Working with Graphics

in the following classes.
Now we extend the JPanel class to create our special panel for drawing. Al-

though is not required to create this seperate class, but it will simplify the design
and makes it modular. Here the only thing to draw is a line, so we keep an in-
stance of MyLine and re-implement the paint() method to display the line. As
discussed earlier in section 3.1, that calling repaint() for some component in-
vokes its paint() method, and thus our line will get drawn. When a component
gets initialized its paint() is called for once, so we need to be careful that it then
doesn’t try to paint the MyLine instance that is yet to be initialized (i.e. set to
null). The class definition looks like as follows.

DrawPanel.java

1 import java.awt.Color;

2 import java.awt.Dimension;

3 import java.awt.Graphics;

4

5 import javax.swing.JPanel;

6

7 public class DrawPanel extends JPanel {

8 MyLine line;

9

10 public DrawPanel() {

11 //creating a dummy line

12 line = new MyLine(10, 10, 100, 100, Color.BLACK);

13

14 this.setBackground(Color.WHITE);

15 //setting our canvas size to be 500x500

16 this.setPreferredSize(new Dimension(500, 500));

17 }

18

19 @Override

20 public void paint(Graphics g) {

21 //super.paint(g) should be called from the

reimplemented method↪→

22 //so that lightweight components are properly rendered

23 super.paint(g);

24

25 line.draw(g); //draw our line

26 }Ra
th
in
dr
a
Na
th
 D
ut
ta

3.3. Code Example: Translating and Scaling a Line 25

27 }

Finlay, we design our UI by extending JFrame. Since also want to take input
from user we create four text-boxes, a few radio buttons and a button. This class
also registers different listeners. The code for this class is given below.

MyFrame.java

1 import java.awt.BorderLayout;

2 import java.awt.Color;

3 import java.awt.Point;

4 import java.awt.event.ActionEvent;

5 import java.awt.event.ActionListener;

6 import java.awt.event.MouseEvent;

7 import java.awt.event.MouseListener;

8 import java.awt.event.MouseMotionListener;

9 import java.awt.event.MouseWheelEvent;

10 import java.awt.event.MouseWheelListener;

11

12 import javax.swing.ButtonGroup;

13 import javax.swing.JButton;

14 import javax.swing.JFrame;

15 import javax.swing.JPanel;

16 import javax.swing.JRadioButton;

17 import javax.swing.JTextField;

18

19 public class MyFrame extends JFrame {

20 JTextField x1, y1, x2, y2;

21 JRadioButton black, blue;

22 ButtonGroup colors;

23 JButton draw;

24 JPanel inputPanel;

25 DrawPanel dp;

26

27 private Color currentColor;

28 private Point prevPoint = null;

29 private boolean lineSelected = false;

30

31 public MyFrame() {

32 initComponents();

33 setListeners();
Ra
th
in
dr
a
Na
th
 D
ut
ta

26 Chapter 3. Working with Graphics

34

35 this.pack();

36 this.setVisible(true);

37 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

38 }

39

40 private void initComponents() {

41 inputPanel = new JPanel();

42

43 x1 = new JTextField(5);

44 y1 = new JTextField(5);

45 x2 = new JTextField(5);

46 y2 = new JTextField(5);

47 inputPanel.add(x1);

48 inputPanel.add(y1);

49 inputPanel.add(x2);

50 inputPanel.add(y2);

51 //set tool tips, so that a message is displays

52 //when the cursor lingers over the component

53 x1.setToolTipText("startX");

54 y1.setToolTipText("startY");

55 x2.setToolTipText("endX");

56 y2.setToolTipText("endY");

57

58 //using ButtonGroup causes only one of the

59 //radio buttons to be selected at a time

60 colors = new ButtonGroup();

61 black = new JRadioButton("Black");

62 blue = new JRadioButton("Blue");

63 colors.add(black);

64 colors.add(blue);

65 inputPanel.add(black);

66 inputPanel.add(blue);

67

68 draw = new JButton("Draw");

69 inputPanel.add(draw);

70

71 //put the inputPanel to the top side of our frame

72 this.add(inputPanel, BorderLayout.NORTH);

73

Ra
th
in
dr
a
Na
th
 D
ut
ta

3.3. Code Example: Translating and Scaling a Line 27

74 dp = new DrawPanel();

75 //put our drawPanel to the bottom side of the frame

76 this.add(dp, BorderLayout.SOUTH);

77 }

78

79 private void setListeners() {

80 black.addActionListener(new ActionListener() {

81 @Override

82 public void actionPerformed(ActionEvent e) {

83 currentColor = Color.BLACK;

84 }

85 });

86 blue.addActionListener(new ActionListener() {

87 @Override

88 public void actionPerformed(ActionEvent e) {

89 currentColor = Color.BLUE;

90 }

91 });

92

93 draw.addActionListener(new ActionListener() {

94 @Override

95 public void actionPerformed(ActionEvent e) {

96 dp.line = new MyLine(

97 Integer.parseInt(x1.getText()),

98 Integer.parseInt(y1.getText()),

99 Integer.parseInt(x2.getText()),

100 Integer.parseInt(y2.getText()),

101 currentColor);

102 repaint();

103 }

104 });

105

106 dp.addMouseListener(new MouseListener() {

107 @Override

108 public void mouseReleased(MouseEvent e) {

109 lineSelected = false;

110 prevPoint = null;

111 }

112 @Override

113 public void mousePressed(MouseEvent e) {
Ra
th
in
dr
a
Na
th
 D
ut
ta

28 Chapter 3. Working with Graphics

114 Point clickPoint = e.getPoint();

115 if (dp.line.doesContain(clickPoint)) {

116 prevPoint = clickPoint;

117 lineSelected = true;

118 }

119 }

120 @Override

121 public void mouseExited(MouseEvent e) {}

122 @Override

123 public void mouseEntered(MouseEvent e) {}

124 @Override

125 public void mouseClicked(MouseEvent e) {}

126 });

127

128 dp.addMouseMotionListener(new MouseMotionListener() {

129 @Override

130 public void mouseMoved(MouseEvent e) {

131 }

132 @Override

133 public void mouseDragged(MouseEvent e) {

134 if (lineSelected) {

135 Point currentPoint = e.getPoint();

136 dp.line.translate(currentPoint.x -

prevPoint.x,↪→

137 currentPoint.y - prevPoint.y);

138 repaint();

139 prevPoint = currentPoint;

140 }

141 }

142 });

143

144 dp.addMouseWheelListener(new MouseWheelListener() {

145 @Override

146 public void mouseWheelMoved(MouseWheelEvent e) {

147 if(e.getWheelRotation() < 0) //up scroll

148 dp.line.scale(1.2, 1.2); //zoom

149 else //down scroll

150 dp.line.scale(1/1.2, 1/1.2); //shrink

151 repaint();

152 }
Ra
th
in
dr
a
Na
th
 D
ut
ta

3.3. Code Example: Translating and Scaling a Line 29

153 });

154 }

155

156 public static void main(String[] args) {

157 new MyFrame();

158 }

159 }

Listing 3.1: Translating and Scaling a Line Using Mouse

The MyFrame class has two private methods. In initComponents() method
we initialize various UI components and organize then on the frame. Whereas,
setListeners() method registers different listeners. First we register action lis-
teners for the two radio-buttons to select the color. These two list listeners simply
updates a class field called currentColor. We also register another action listen-
ers for the draw-button. This one reads the values from the text-fields and creates
a new line.

Now, let us see how the transformation actually works. In order to do the
translation we need to click exctly on the line(which is drawn on our draw-panel)
and drag it. First, we register a MouseListener for our draw panel. Now when
we press the mouse (left) button, we first check that whether the mouse pointer
is actually on the line or not. We call the getPoint() method of the MouseEvent

instance to get the current position(a point) of the mouse pointer. Then we invoke
our doesContain() method of the MyLine class. If the point is on the line we set
a flag, lineSelected to true, and set the prevPoint to this point. Moreover, we
reset these two variables when the mouse button is released.

We also need to register a MouseMotionListener in oder to translate the line
as the mouse is dragged over the draw panel. To do this, we get the current
mouse position(similarly as above), calculate the tx and ty values as the coordinate
difference between current and previous position of the mouse. Then we invoke
the translate() method of MyLine. Now the line is translated but we need to
call repaint() in order to see the effect. Finally, we update the previous point to
be the current point. Note that we need to do all of these only if we had actually
clicked on the line. This can easily be determined from the lineSelected flag.

Scaling is taken care by the MouseWheelListener. Lets assume that when we
scroll the mouse wheel up we want to zoom the line, and scrolling down shrinks
the line. The We invoke the getWheelRotation() of MouseWheelEvent to detect
the direction of scrolling. Then we simply invoke the scale() of MyLine with
sx = 1.2, sy = 1.2 for zooming and sx = 1/1.2, sy = 1/1.2 for shrinking the line.
Finally, we invoke repaint() to see the scaled line.

Ra
th
in
dr
a
Na
th
 D
ut
ta

30 Chapter 3. Working with Graphics

For more details on various mouse events see section B.1.

3.4 Paint Mode

By default, whenever we draw a new object it overwrites anything beneath it.
However it is possible to draw in XOR mode.

void setXORMode(Color xorColor)

It sets the paint mode of this graphics context to alternate between this graphics
context’s current color and the new specified xorColor. When drawing operations
are performed, pixels which are the current color are changed to the specified color,
and vice versa. This guarantees that the new object is always visible. To return
to default overwrite mode we have the following one.

void setPaintMode()

3.5 Showing Texts

The Graphics class also provides a method to display on a component.

void drawString(String str, int x, int y)

here (x, y) denotes the position to display the given string str. There is
also a Font class available to change the font and style of the graphics con-
text. https://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/

Font.html provides the full details of the font API.

Ra
th
in
dr
a
Na
th
 D
ut
ta

https://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Font.html
https://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Font.html

Chapter 4

Working with 2D Graphics

Java provides more sophisticated control over the graphics elements in the 2D
space. The 2D API provides following capabilities:

• A uniform rendering model for display devices and printers

• A wide range of geometric primitives, such as curves, rectangles, and ellipses,
as well as a mechanism for rendering virtually any geometric shape

• Mechanisms for performing hit detection on shapes, text, and images

• A compositing model that provides control over how overlapping objects are
rendered

• Enhanced color support that facilitates color management

• Support for printing complex documents

• Control of the quality of the rendering through the use of rendering hints

The 2D API maintains a two coordinate spaces:

User space is a device-independent logical coordinate system, the coordinate
space that the program uses. All geometries passed into Java 2D rendering
routines are specified in user-space coordinates.

Device space is a device-dependent coordinate system that varies according to
the target rendering device such as a screen, window, or a printer.

The coordinate system for a window or screen might be very different from the
coordinate system of a printer, these differences should be transparent to pro-
grammers. Thus the necessary conversions between user space and device space
are performed automatically during rendering.

By default the origin of user space is the upper-left corner of the component’s
drawing area. The x coordinate increases to the right, and the y coordinate in-
creases downward. The top-left corner of a window is 0,0. All coordinates are
specified using integers, which is usually sufficient. However, in some cases require
floating point or even double precision which are also supported.

31

Ra
th
in
dr
a
Na
th
 D
ut
ta

32 Chapter 4. Working with 2D Graphics

4.1 The Graphics2D Class

The Java 2D API includes the Graphics2D1 class, which extends the Graphics

class to provide access to the enhanced graphics and rendering features of the Java
2D API. These features include:

• Rendering the outline of any geometric primitive, using the stroke and paint
attributes using draw method.

• Rendering any geometric primitive by filling its interior with the color or
pattern specified by the paint attributes using fill method.

• Rendering any text string using the drawString method.

• Rendering the specified image using the drawImage method.

The methods available in Graphics2D class can be divided into two groups: meth-
ods to draw or fill a shape and methods that affect rendering. The second group
of the methods serves the following purposes in the Graphics2D context:

• Vary the stroke width

• Change how strokes are joined together

• Set a clipping path to limit the area that is rendered

• Translate, rotate, scale, or shear objects when they are rendered

• Define colors and patterns to fill shapes with

• Specify how to compose multiple graphics objects

It was mentioned earlier that, the current graphics context for any component can
be obtained through its paint or update method. In order to get the Graphics2D

context of that component we can simply use type casting as follows:

public void paint (Graphics g) {

Graphics2D g2d = (Graphics2D) g;

...

}

For more details on Graphics2D class and available methods see http://ratcoinc.
github.io/Java_Swing/oracle_docs/api/java/awt/Graphics2D.html

1The Graphics2D class is available in java.awt package.

Ra
th
in
dr
a
Na
th
 D
ut
ta

http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Graphics2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Graphics2D.html

4.1. The Graphics2D Class 33

4.1.1 2D Geometric Primitives

The Java 2D API provides a useful set of standard shapes such as points, lines,
rectangles, arcs, ellipses, and curves mainly in the java.awt.geom package. Arbi-
trary shapes can be represented by combinations of these standard shapes. Figure
4.1 shows a list classes and interfaces corresponding to these shapes.

Figure 4.1: Hierarchy of 2D Geometric Primitives

Shape

The Shape interface represents any geometric shape having an outline and an
interior. This interface provides a common set of methods for describing and
inspecting two-dimensional geometric objects and supports curved line segments
and multiple sub-shapes. It contains the following methods:

Ra
th
in
dr
a
Na
th
 D
ut
ta

34 Chapter 4. Working with 2D Graphics

Rectangle getBounds()

Rectangle2D getBounds2D()

The getBounds() returns an (integer) Rectangle instance representing the small-
est bounding box that completely encloses the shape. Whereas, getBounds2D()
gives a high precision and more accurate (floating point) bounding box as an
Rectangle2D instance.

boolean contains(double x, double y)

boolean contains(Point2D p)

boolean contains(double x, double y, double w, double h)

boolean contains(Rectangle2D r)

The method contains(double x, double y) tests if the specified (x, y) point is
inside shape and contains(Point2D p) does the same for a point represented by a
Point2D instance. The contains(double x, double y, double w, double h)

method tests if the shape entirely contains the specified rectangular area defined by
its top-left corner point (x, y) along with the width and height of the rectangle. The
contains(Rectangle2D r) method does the same for a Rectangle2D instance.

boolean intersects(double x, double y, double w, double h)

boolean intersects(Rectangle2D r)

The intersects() methods test whether the interior of the Shape intersects the
interior of a specified rectangular area.

For more details see http://ratcoinc.github.io/Java_Swing/oracle_docs/
api/java/awt/Shape.html.

Points

The Point2D class defines a point representing a location (x, y). Note that the
term “point” here is not the same as a pixel. A point has no area, does not
contain a color, and cannot be rendered. Points are used to create other shapes.
The Point2D class also includes methods for calculating the distance between
two points. This is an abstract class thus cannot be instantiated directly. It
contains two static nested classes Point2D.Double and Point2D.Float to in-
stantiate a Point2D object in double and float precision respectively. For more
details see http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/

awt/geom/Point2D.html.

Lines

The Line2D class, a subclass of Shape, is an abstract class that represents a line.
This is an abstract class and contains two static nested classes Line2D.Double and

Ra
th
in
dr
a
Na
th
 D
ut
ta

http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Shape.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/Shape.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/Point2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/Point2D.html

4.1. The Graphics2D Class 35

Line2D.Float to instantiate a Line2D object in double and float precision respec-
tively. For more details see http://ratcoinc.github.io/Java_Swing/oracle_

docs/api/java/awt/geom/Line2D.html

Rectangles

The RectangularShape is an abstract base class that defines rectangular frame or
bounding boxes for other shapes. The Rectangle2D, RoundRectangle2D, Arc2D,
and Ellipse2D classes are all derived from the RectangularShape class which
is a subclass of Shape. These four classes are again abstract classes and contain
two static nested classes to create instances in double or float precision. For more
details see http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/

awt/geom/RectangularShape.html.

Curves

The QuadCurve2D class enables us to create quadratic parametric curve segments
where a quadratic curve is defined by two endpoints and one control point.The
CubicCurve2D class enables us to create cubic parametric curve segments where a
cubic curve is defined by two endpoints and two control points. These two classes

are again abstract classes and contain two static nested classes to create instances
in double or float precision. For more details see http://ratcoinc.github.io/

Java_Swing/oracle_docs/api/java/awt/geom/QuadCurve2D.html and http://

ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/CubicCurve2D.

html.

Arbitrary Shapes

The GeneralPath class enables you to construct an arbitrary shape by speci-
fying a series of positions along the shape’s boundary. These positions can be

Ra
th
in
dr
a
Na
th
 D
ut
ta

http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/Line2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/Line2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/RectangularShape.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/RectangularShape.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/QuadCurve2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/QuadCurve2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/CubicCurve2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/CubicCurve2D.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/CubicCurve2D.html

36 Chapter 4. Working with 2D Graphics

connected by line segments, quadratic curves, or cubic (Bézier) curves. The fol-
lowing shape can be created with three line segments and a cubic curve. For more
details see http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/

awt/geom/GeneralPath.html.

Area

With the Area class, one can perform boolean operations, such as union, inter-
section, subtraction, and exclusive or on any two Shape objects. This technique,
often referred to as constructive area geometry, enables us to easily create complex
shapes. For more details see http://ratcoinc.github.io/Java_Swing/oracle_

docs/api/java/awt/geom/Area.html.

Ra
th
in
dr
a
Na
th
 D
ut
ta

http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/GeneralPath.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/GeneralPath.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/Area.html
http://ratcoinc.github.io/Java_Swing/oracle_docs/api/java/awt/geom/Area.html

Appendix A

Java Basics

A.1 Interfaces

An interface is a special type of class which is fully abstract. The followings
describe an interface:

• The keyword interface is used instead of class when defining an interface.
File containing an interface still has the .java extension, and when compiled
produces .class file(s) like any other java classes.

• Every method in an interface are abstract.

• An interface can only contain members qualified with both static and
final.

• One cannot instantiate an interface, they are designed only to be inherited
by some other class or interface.

• A class implements an interface, while extends keyword is used for inherit-
ing classes.

• Interface allows multiple inheritance.

• A class that implements an interface, must also define all of the unimple-
mented(abstract) methods in that interface.

• Sometimes one might wish to leave some of the methods to be implemented
later by some other derived class, in such cases this class must be declared
either as an interface or as a abstract class depending on the situation.

Shape.java

1 public interface Shape {

2 public double getArea();

3 public double getPerimeter();

37

Ra
th
in
dr
a
Na
th
 D
ut
ta

38 Appendix A. Java Basics

4 }

Rectangle.java

1 public class Rectangle implements Shape {

2 private int w,h;

3

4 public Rectangle(int w, int h) {

5 this.w = w;

6 this.h = h;

7 }

8

9 @Override

10 public double getArea() {

11 return w*h;

12 }

13

14 @Override

15 public double getPerimeter() {

16 return 2*(w+h);

17 }

18 }

Circle.java

1 public class Circle implements Shape {

2 private int r;

3

4 public Circle(int r) {

5 this.r = r;

6 }

7

8 @Override

9 public double getArea() {

10 return Math.PI*r*r;

11 }

12

13 @Override

14 public double getPerimeter() {
Ra
th
in
dr
a
Na
th
 D
ut
ta

A.2. Inner Class 39

15 return 2*Math.PI*r;

16 }

17 }

Listing A.1: Interface

A.2 Inner Class

In Java it is possible to define a class nested within any other block. The scope
of the nested class is limited by scope of of the enclosing block. Such a nested
class can be declared directly within the enclosing braces of a class. These type of
nested class can access members(even private ones) of the outer class. However,
outer class cannot directly access member of the nested class. A nested class can
be declared either as static or non-static. A static nested class (declared with the
static keyword) requires an instance of the outer class to access its members. A
non-static nested class is called an inner class. It can directly access any non-
static member of its enclosing class. Followings are compelling reasons for using a
nested classes.

• It is a way of logically grouping classes that are only used in one
place: If a class is useful to only one other class, then it is logical to embed
it in that class and keep the two together. Nesting such ”helper classes”
makes their package more streamlined.

• It increases encapsulation: Consider two top-level classes, A and B, where
B needs access to members of A that would otherwise be declared private.
By hiding class B within class A, A’s members can be declared private and
B can still access them. In addition, B itself can be hidden from the outside
world.

• It can lead to more readable and maintainable code: Nesting small
classes within top-level classes places the code closer to where it is used.

SortedLinkedList.java

1

2 public class SortedLinkedList {

3 private class Node { //inner class

4 int data;

5 Node next;
Ra
th
in
dr
a
Na
th
 D
ut
ta

40 Appendix A. Java Basics

6

7 public Node(int data) {

8 this.data = data;

9 next = null;

10 }

11 }

12

13 private Node root;

14

15 public SortedLinkedList() {

16 root = null;

17 }

18

19 public void insert(int value) {

20 //scan and insert a new node

21 }

22

23 public int search(int value) {

24 //search and return position, -1 if not found

25 }

26

27 public void delete(int value) {

28 //search and delete the node

29 }

30 }

Listing A.2: Using an Inner Class in Java

A.2.1 Anonymous Inner Class

An anonymous inner class is a special type of inner class that has no name
assigned to it. It is mainly used to easily generate instances for some interface. To
be clear, an interface cannot be instantiated and these instances are of a class that
implements the interface. Syntax for an anonymous inner class looks as follows.

new InterfaceName(){

@Override

public void aUnimplementedMethod(args){

//method body

}
Ra
th
in
dr
a
Na
th
 D
ut
ta

A.2. Inner Class 41

//definitions of other unimplemented methods

}

The syntax new InterfaceName(){...} tells compiler that the code between the
braces defines an anonymous inner class. This class implements the interface spec-
ified by InterfaceName, and gets automatically instantiated when this expression
is evaluated.

Being an inner class, any anonymous inner class has access to all of the members
of its enclosing class. Moreover, the method definition provided inside the body of
the anonymous inner class is local to the instance created by the expression. This
becomes very handy when using event listeners as shown earlier in section 2.5.

Ra
th
in
dr
a
Na
th
 D
ut
ta

42 Appendix A. Java Basics

Ra
th
in
dr
a
Na
th
 D
ut
ta

Appendix B

Mouse and Keyboard Events

Mouse and keyboard are the two primary input devices in a system. Any good user
interface must be designed is such a away that the UI is responsive to both mouse
interactions and key stokes. While the mouse can be used to select, highlight,
move various elements on the UI, a keyboard can be used to type in simple texts,
numbers or a key combination (shortcut) to trigger certain things.

B.1 Handling Mouse Events

The MouseEvent class, which extends the InputEvent class, defines eight types
of mouse events: click, drag, enter, exit, move, press, release, and wheel. Any
instance of this class provides the following methods.

int getX() //returns the x-coordinate of the mouse

int getY() //returns the y-coordinate of the mouse

Point getPoint() //returns current location the mouse as a point

instance↪→

void translatePoint(int tx, int ty) //changes the location of the

event↪→

int getClickCount() //returns the number of mouse clicks

associated with this event↪→

boolean isPopupTrigger() //tests whether the event causes a pop-up

menu to appear↪→

Point getLocationOnScreen() //returns the absolute position of the

event on the entire screen↪→

int getXOnScreen() //returns the absolute x-coordinate of the

event on the entire screen↪→

int getYOnScreen() //returns the absolute y-coordinate of the

event on the entire screen↪→

int getButton() //returns the button number

For a three button mouse the returned button numbers range from 0 to 3, where
0 or NOBUTTON means no button was pressed or released, 1 or BUTTON1 means left

43

Ra
th
in
dr
a
Na
th
 D
ut
ta

44 Appendix B. Mouse and Keyboard Events

mouse button, 2 or BUTTON2 means middle mouse button, and 3 or BUTTON3 means
right mouse button. For mouse with five buttons the return value ranges from 0 to
5. The SwingUtilities class supplies three methods: boolean isLeftMouseButton(),
boolean isMiddleMouseButton(), boolean isRightMouseButton() to easily de-
termine which of the Mouse buttons is pressed.

B.1.1 Listening Mouse Events

The MouseListener interface listens to five mouse events defined in MouseEvent

class, and it defines five methods corresponding to these events.

MOUSE_PRESSED event occurs when the mouse button is pressed. Corresponding
method is void mousePressed(MouseEvent e)

MOUSE_RELEASED event occurs when the mouse button is released. Corresponding
method is void mouseReleased(MouseEvent e)

MOUSE_CLICKED event occurs when the mouse button is pressed and released at the
same point. Corresponding method is void mouseClicked(MouseEvent e)

MOUSE_ENTERED event occurs when the mouse pointer enters a component. Cor-
responding method is void mouseEntered(MouseEvent e)

MOUSE_EXITED event occurs when the mouse pointer exits a component. Corre-
sponding method is void mouseExited(MouseEvent e)

The MouseMotionListener interface listens to two more mouse events.

MOUSE_MOVED event occurs when the mouse pointer is moved on a component.
The corresponding method void mouseMoved(MouseEvent e) gets multiple
times as the mouse moves.

MOUSE_DRAGGED event occurs when a mouse button is pressed on a component and
then dragged (mouse moved while pressing the mouse button) on the screen.
The corresponding method void mouseDragged(MouseEvent e) gets mul-
tiple times as the mouse moves.

The MouseWheelEvent class extends the MouseEvent class. If a mouse do have
the wheels this class is used to handle the following event.

MOUSE_WHEEL event occurs when the mouse wheel is moved. The corresponding
method is void mouseWheelMoved(MouseWheelEvent e).

The MouseWheelEvent class further divides this event into two sub types.

Ra
th
in
dr
a
Na
th
 D
ut
ta

B.2. Handling Key Events 45

WHEEL_BLOCK_SCROLL: a page-up/page-down scroll event

WHEEL_UNIT_SCROLL: a line-up/line-down scroll event

It also defines some new methods, some of them are

int getScrollType() //returns either WHEEL_BLOCK_SCROLL or

WHEEL_UNIT_SCROLL↪→

int getWheelRotation() //returns the number of "clicks" the

mouse wheel was rotated, as an integer. The value if positive

for counterclockwise rotation (down scroll), and negative for

clockwise rotation (up scroll)

↪→

↪→

↪→

double getPreciseWheelRotation() //returns the number of "clicks"

the mouse wheel was rotated, as a double. It works same as the

above, used for high resolution mouse wheels

↪→

↪→

B.2 Handling Key Events

The class KeyEvent covers the various key events that occurs due to some key-
board input. The KeyEvent is a subclass of InputEvent and defines various inte-
ger constants, called key codes : VK_0 through VK_9, VK_A through VK_Z, VK_ALT,
VK_CONTROL, VK_ENTER, VK_ESCAPE, VK_SHIFT, VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT,
VK_PAGE_UP, VK_PAGE_DOWN etc. They corresponds to the keys as per their names.
The prefix VK means virtual keys, and these constants are independent of any
modifiers such as control, shift, or alt. The KeyEvent defines several methods, of
which the following two are most common.

char getKeyChar() //returns the character equivalent of the key

that was entered↪→

int getKeyCode() //returns the key code

B.2.1 Listening to Key Events

There are three types of key events and their corresponding methods are defined
in the KeyListener interface.

KEY_PRESSED event occurs whenever a key is pressed. This event invokes the
void keyPressed(KeyEvent e) method.

KEY_RELEASED event occurs whenever a key is released. This event invokes the
void keyReleased(KeyEvent e) method.

KEY_TYPED event occurs whenever a key is pressed and released. This event
invokes the void keyTyped(KeyEvent e) method.

Ra
th
in
dr
a
Na
th
 D
ut
ta

46 Appendix B. Mouse and Keyboard Events

The keyTyped() method is invoked only if a character is entered. When a user
presses and releases a key, three events are generated in this sequence: KEY_PRESSED,
KEY_TYPED, KEY_RELEASED. When a user presses one of the special keys like HOME
key, then only KEY_PRESSED and KEY_RELEASED are generated.

Ra
th
in
dr
a
Na
th
 D
ut
ta

Bibliography

[Schildt, 2011] Schildt, H. (2011). Java The Complete Reference, 8th Edition. The
Complete Reference. Mcgraw-hill.

47

Ra
th
in
dr
a
Na
th
 D
ut
ta

	Acknowledgment
	Introduction to Java Swing
	About Swing
	Components and Containers
	Coding a Swing Application
	Coding Techniques and Best Practices

	Event Handling in Swing
	The Delegation Event Model
	Different Events in Java
	Coding to Handle Events
	Handling Events From Multiple Sources
	Event Handling With Anonymous Inner Classes

	Working with Graphics
	Drawing with Graphics
	Drawing and Filling Primitive Shapes

	Colors
	Changing Graphics Color

	Code Example: Translating and Scaling a Line
	Paint Mode
	Showing Texts

	Working with 2D Graphics
	The javaGraphics2D Class
	2D Geometric Primitives

	Java Basics
	Interfaces
	Inner Class
	Anonymous Inner Class

	Mouse and Keyboard Events
	Handling Mouse Events
	Listening Mouse Events

	Handling Key Events
	Listening to Key Events

	Bibliography

