Computer Organization
 Assignment 3

Due date: September 8, 2022

Keep your answers concise as well as neat \& clean.
Submit your MIPS codes via this Google Form: https://forms.gle/pmTYXUwuF9p3jiob9. All MIPS codes should run as is in QtSPIM^{1}. Clearly state your assumptions (if any). Some MIPS resources are available at: https://www.isical.ac.in/~rathin_r/uploads/CO/2022/MIPS_resources.html [backup] https://ratcoinc.github.io/MIPS/

1. Given a four-variable switching function represented in the canonical PoS (Product of Sums) form as:

$$
f(a, b, c, d)=\Pi(5,7,10,12,14,15)+\Phi(1,4,13)
$$

where $\Phi(i)$ denotes a don't-care condition that means for the input combination with binary value i, the output is to be ignored.
i. Minimize the function using K-map.
ii. Represent the same function $f(a, b, c, d)$ in canonical SoP form and minimize it.
iii. Implement both minimized functions obtained in i and ii using AND, OR and NOT gates. With respect to hardware complexity which one is better? Justify your answer.

$$
[5+(4+4)+(3+3+1)=20]
$$

2. Recall that MIPS does not provide any instruction to obtain 1's complement of a bit pattern.
i. Devise an efficient ${ }^{2}$ way to obtain 1's complement of an integer in MIPS using only the existing instruction(s). Furthermore, you are restricted from specifying any constant explicitly (thus you cannot do $X \oplus 1$).
ii. Now write MIPS code to load the year of your birth (YYYY) in $\$ t 0$ and then compute its 1's complement into the same $\$ t 0$ using your solution of part i.
$[5+5=10]$
3. Let A be a constant that denotes the last two digits of your roll number (day of birth in case of JRFs). Now let $D=\max (A, 60-A)$. Suppose you need to load this value D into a register of the MIPS processor, but you cannot explicitly specify any constant values in your code (thus cannot use any immediate mode instructions and some others). Write a minimal MIPS code to load D into $\$ t 0$.
[hint: MIPS provides the constant 0 in $\$$ zero $/ \$ 0$, if you can somehow generate +1 out of this 0 , you are done. You might want to explore the arithmetic and logic operations.]
4. i. Write an efficient C (or similar) function which receives a positive integer n as an argument then counts the number of 1 s in n and returns that count.
ii. Suppose register $\$ t 0$ contains n. Write an efficient MIPS code to count the number of 1 s in n and store the count into the memory location X interpreted in HEX, where $X=10000000+32 * A(A$ is defined in ques 3). That is if $A=60$, the value of X is 0×10001920 in HEX.
iii. Comment on the time complexity of your solution.

$$
[5+5+2=12]
$$

5. Suppose there are n distinct integers all in the closed interval of $[0, n]$, that is only one number is absent, and all others occur exactly once. Your task is to find the missing number efficiently.
i. Write an efficient C (or similar) function for this. Note that the value of n can be very high, say INT_MAX ${ }^{3}$, so arithmetic operations may result into overflows ${ }^{4}$.
ii. Suppose, memory location 0×10001000 contains n and the given numbers reside in n consecutive locations starting at 0×10002000. Write a MIPS code that writes the missing number at the memory location 0x10003000 using the method devised in part i. $\quad[5+8=13]$
[^0]
[^0]: ${ }^{1}$ QtSPIM version 9.1.23 available at: https://sourceforge.net/projects/spimsimulator/files/
 ${ }^{2}$ efficient means lesser number of instructions and/or involves lesser data transfer
 ${ }^{3}$ Sizes of various built-in integral types of C/C++: https://cplusplus.com/reference/climits/
 ${ }^{4}$ https://en.wikipedia.org/wiki/Integer_overflow\#Origin

