MIPS Programming

Rathindra Nath Dutta & Subhojit Sarkar

Senior Research Fellow Advanced Computing & Microelectronics Unit Indian Statistical Institute, Kolkata

September 1, 2022

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

Writing Your First MIPS Code

// C code		<i># using instructions</i>	# final MIPS Code
a = 10		li a, 10	li \$t0, 10
b = 20	\Rightarrow	li b, 20 ⇒	li \$t1, 20
c = a + b		add c, a, b	add \$t3, \$t0, \$t1

RN Dutta & S Sarkar (ACMU, ISI)

September 1, 2022

A MIPS Code Template # Declare main as a global function

.globl main

```
# All program code is placed after the
# .text assembler directive
.text
```

```
# The label 'main' represents the starting point
main:
```

YOUR CODE GOES HERE

```
# Exit the program by means of a syscall.
# by placing its code in $v0. The code for exit is "10"
li $v0, 10 # exit syscall
syscall
```

```
# All memory structures are placed after the
# .data assembler directive
.data
```

```
# The .word assembler directive reserves space
# in memory for one or more 4-byte words
list: .word 1, 4, 8
```

• Ideally one should execute on a MIPS hardware

• We will be using a <u>free</u> simulator tool: $SPIM^1$

¹more specifically QtSPIM: http://spimsimulator.sourceforge.net/

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

• Ideally one should execute on a MIPS hardware

• We will be using a <u>free</u> simulator tool: $SPIM^1$

• Name of the simulator is a reversal of the letters 'MIPS'

¹more specifically QtSPIM: http://spimsimulator.sourceforge.net/

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

Getting started with QtSPIM

3 primary sections: Register panel, Memory panel, & Messages panel.

80	00 0	tSpim							
1	2	🖬 🎯			► 11	■ Ξ)	0		
EP B	legs	Int Regs [16]			Data	Text			
Int Re	as [16]			88	Text				08
-									
PDC		0		n	1 100400000	1 96-40000	User text segne		n
Course		ő			100400004	1 27-50004		, 105, 1W val olvap) # algo	
DadW	ddr -	0			100400004	1 2/250004	addin \$6 \$5 4	, 185; addiu Sal Sal 4 # argy	
Chat		20006610			100400000	1 00041090	all 62 64 2	, 105. addid bar bar 4 F envp	
Juan		30001110			100400010	1 00c23021	addu \$6 \$6 \$2	, 187, addu \$a2 \$a2 \$v0	
		0			100400014	1 0c000000	1al 0x00000000 [main]	, 188, jal main	
81		0			100400018	1 00000000	Jar exceeded [marn]	: 189: pop	
		0			10040001	1 3402000a	071 52 50 10	- 101- 1i Sun 10	
-		0			100400020	1 00000000	avecall	1921 syscall # syscall 10 (exit)	
RO	[ro] -	0				,	- Jeener	,	
R1	atj -	0					Kernel Text Segme	ent [80000000] . [80010000]	
RZ	[00] -	0			180000180	1 0001d821	addu \$27, \$0, \$1	1 901 move Skl Sat # Save Sat	
R3		0			[80000184	1 3c019000	lui \$1, -28672	: 92: sw Sv0 sl # Not re-entrant and we can't	
2.4	au	0			trust Sar			,	
20	[a1] -	766664.04			180000188	1 ac220200	sw \$2, 512(\$1)		
22	[44]	0			[8000018c	1 3c019000	lui \$1, -28672	: 93: sw \$a0 s2 # But we need to use these	
20	[80] -	0			registers				
20	(*1)	0			[80000190	1 ac240204	sw \$4, 516(\$1)		
P10	(+2) -	0			[80000194] 401a6800	mfc0 \$26, \$13	; 95: mfc0 \$k0 \$13 # Cause register	
p11	(+ 21 -	ő			[80000198	1 001a2082	srl \$4, \$26, 2	; 96; srl \$a0 \$k0 2 # Extract ExcCode Field	
B12	+41 -	0			[8000019c	3084001f	andi \$4, \$4, 31	; 97: andi \$a0 \$a0 Ox1f	
P13		0			[800001a0	34020004	ori \$2, \$0, 4	; 101: li \$v0 4 # syscall 4 (print_str)	
R14	[16]	0			[800001a4	1 3c049000	lui \$4, -28672 [m1_]	; 102: la \$a0m1_	
P15	+71 -	0			(800001a8) 0000000c	syscall	; 103: syscall	
R16	[80] -	0			[800001ac	34020001	ori \$2, \$0, 1	; 105: li \$v0 1 # syscall 1 (print_int)	
B17	[81]	0			[800001b0] 001a2082	srl \$4, \$26, 2	; 106: srl Sa0 Sk0 2 # Extract ExcCode Field	
R18	[82] -	0			[800001b4] 3084001f	andi \$4, \$4, 31	; 107: andi \$a0 \$a0 0x1f	
R19	[#3] =	0			[800001b8] 0000000c	syscall	; 108: syscall	
R20	[#4] -	0			[800001bc	34020004	ori \$2, \$0, 4	; 110: li \$v0 4 # syscall 4 (print_str)	
R21	[85] -	0			[800001c0	1 3344003c	andi \$4, \$26, 60	; 111: andi \$a0 \$k0 0x3c	
R22	[86] -	0			[800001c4] 3c019000	lui \$1, -28672	; 112: lw \$a0excp(\$a0)	
R23	[\$7] -	0			[800001c8] 00240821	addu \$1, \$1, \$4		
R24	[18] -	0			[800001cc] 8c240180	lw \$4, 384(\$1)		
R25	[19] -	0			[800001d0	1 00000000	nop	; 113: nop	
R26	[k0] -	0			[800001d4] 0000000c	syscall	; 114: syscall	
R27	(k1) -	0			[800001d8	34010018	ori \$1, \$0, 24	; 116: bne \$k0 0x18 ok_pc # Bad PC exception	
Conu	right 1	000-2012 15	mor D	1 2010					
	ohte D	served	mes R.	LaiUS.					
SPIM	is dist	ibuted under		licens	0				
Seet	ho filo	DEADME For	a bob	ucens	e. ht potico				0
seet	ne rite	READ METON	andito	opying	inchocice.				

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

Getting started with QtSPIM contd.

Text tab in Memory panel shows the Program memory contents Data tab shows the contents of the Data memory space

Data	Text																		
Data																		Ø	16
User data	segment [100	000000][10	040000]																1
[10000000][1003ffff]	00000000																	
User Stac	k [7ffff4dc].	. 180000001																	
[7ffff4de	1 00000000																		
[7ffff4e0	00000000	7fffffed	7fffffc2	7fffffb7		2		2											
[7ffff4f0] 7fffffa	7 7fffff58	7fffff46	7ffffflc					х.			F							
[7ffff500] 7fffff01	f 7ffff9ee	7ffff9b4	7ffff980															
[7ffff510] 7ffff95a	a 7ffff906	7ffff8d0	7ffff8a0	Z														
[7ffff520] 7ffff83a	a 7ffff820	7ffff80e	7££££7£7															
[7ffff530] 7ffff7e6	5 7ffff7ad	7ffff78e	7££££779											У				
[7ffff540] 7ffff771	1 7ffff75e	7ffff732	7ffff722	q				۰.			2							
[7ffff550] 7ffff6d0	7ffff66e	7ffff64e	7ffff643					n.			Ν			С				
[7ffff560] 7ffff629	9 7££££607	7ffff5ee	7ffff5c9)														
[7ffff570] 7ffff590) 7ffff57e	00000000	3d5f0000					~ .										
[7ffff580	1 72737521	E 6e69622f	7374712f	006d6970	/	u	s	r	/ 1	i	n	1	i t	s	p	i	m.		
[7ffff590] 50444c41	£ 2£3d4457	656d6£68	68736a2f	0	L	D	Ρ	WI) =	1	h () m	e	1	ź.	s h		
[7ffff5a0	72656661	1 7469622f	6b637562	672£7465	a	f	e	r	/ 1) i	t	bı	: 0	k	e	t	/ g		
[7ffff5b0	69646172	2 325f676e	5f323130	6c6c6166	r	a	d	i	n ç		2	0	1 2	_	f	а	11		
[7ffff5c0) 70636555	E 30373165	55415800	524£4854	_	e	с	р	e 1	7	0	. 3	C A	U	т	Н	O R		
[7ffff5d0] 3d595449	9 6d6f682f	736a2f65	65666168	I	т	Y	-	/ 1	0	m	e ,	/ j	s	h	a	fe		
[7ffff5e0] 582e2f72	2 68747561	7469726£	4£430079	r	1		х	at	t	h	0	: i	t	У		со		
[7ffff5f0	54524£4d	d4d5245	6d6f6e67	65742d65	L	0	R	т	ΕE	M	-	q i	1 0	m	è	-	t e		
[7ffff600] 6e696d72	2 4c006c61	43535345	45534f4c	r	m	ŝ	n	a 1		L	Ē :	s s	C	L	0	SE		
[7ffff610] 73752£3d	d 69622£72	656c2f6e	69707373	-	1	u	s	r /	b	i	n ,	/ 1	e	s	s	рi		
[7ffff620	25206570	73252073	47445800	5255435f	p	e		8	s	- 8	s		(D	G	_	С	UR		
[7ffff630) 544e4552	2 5345445£	504£544b	696e553d	R	Е	Ν	Т	_ 1	E	S	K 1	r c	P	=	U	n i		
[7ffff640	44007974	4 4c505349	3a3d5941	454c0030	t	v		D	I S	P	L	A I	ć =		0		LE		
[7ffff650	1 504£5353	3 7c3d4e45	73752£20	69622f72	s	ŝ	0	P	EN	-	Ű.	1	/ u	s	r	1	b i		
[7ffff660) 656c2f6e	69707373	25206570	42440073	n	1	1	e	s s	p	i	p		8	s		DВ		
[7ffff670) 535£5355	5 49535345	425f4e4f	415£5355	U	s		s	E S	ŝ	I	ò 1	ι.	в	U	s	_ A		
[7ffff680	1 45524444	4 753d5353	3a78696e	74736261	D	D	R	Е	s s	-	u	n			a	ь	s t		
[7ffff690	1 74636172	2 6d742f3d	62642£70	672d7375	r	a	c	t	-)	t	m	D	d d	b	u	s	- a		
[7ffff6a0	53796255	5 6d364839	75672c63	373d6469	Ū	b	v	s	9 8	6	m	è		u	i	d	= 7		
[7ffff6b0	37393630	38666539	35323230	38303334	ō	6	9	7	9 6	£	8	0	2 2	5	4	3	0 8		
[7ffff6c0	62333139	30656463	30303030	00313330	9	1	3	b	è è	e	ő	0	0	0	ó	3	i .		1
10000000000						2	-					-	_	_	-				

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

• Save your MIPS code with .s or .asm extension

• Load your code in QtSPIM via 'Reinitialize and Load File' option

• Click on the play button to run your code

Consider the following C code fragment

int x = 10; int y = 20; printf("%d", x + y); // prints a integer

Using QtSPIM Console contd.

```
.globl main
.text
main:
    lw $t0, x
    lw $t1, y
    add $t3, $t0, $t1
    li $v0, 1 # print_int syscall
    move $a0, $t3
    syscall
    li $v0, 10 # exit syscall
    syscall
.data
x: .word
          10
    .word
            20
v:
```

¹SPIM syscalls: https://www.doc.ic.ac.uk/lab/secondyear/spim/node8.html RN Dutta & S Sarkar (ACMU, ISI) Computer Organization September 1, 2022

```
Consider the following C code fragment
int arr[] = {1, 5, 8, 10, 3};
int n = 5; // lenght of arr
int sum = 0;
int i = 0;
while (i != n) \{
    sum = sum + arr[i];
    i = i + 1;
}
printf("%d", sum);
```

Array and Loops contd.

```
Terminating condition rewritten
           Array indexing replaced by pointer operation
int arr[] = {1, 5, 8, 10, 3};
int n = 5; // lenght of arr
int sum = 0;
int i = 0:
while (n != 0) {
    sum = sum + *(arr + i); // pointer arithmetic
    i = i + 1;
    n = n - 1;
}
printf("%d", sum);
```

Array and Loops contd.

```
The while loop is converted to do...while assuming n > 0
int arr[] = {1, 5, 8, 10, 3};
int n = 5; // lenght of arr
int sum = 0;
int i = 0:
do {
    sum = sum + *(arr + i); // pointer arithmetic
    i = i + 1;
    n = n - 1;
} while (n != 0); // assume n > 0
printf("%d", sum);
```

Utility of the index variable i is substituted with pointer shifting

```
int arr[] = {1, 5, 8, 10, 3};
int n = 5; // lenght of arr
int sum = 0;
int *p = arr; // base address
do {
    sum = sum + *p;
    p = p + 1; // pointer arithmetic
    n = n - 1;
} while (n != 0); // assume n > 0
printf("%d", sum);
```

Array and Loops contd.

```
.globl main
.data
arr: .word 1, 5, 8, 10, 3
n: .word 5
.text
main:
    la $t0, arr # p
    lw $t1, n
    li $t2, 0 # sum
loop:
    lw $t4, 0($t0) # *p
    add $t2, $t2, $t4 # sum = sum + *p
    addi $t0, $t0, 4 # incrementing p, integers are 4 byte long
    addi $t1, $t1, -1 \# n = n - 1
    bne $t1, $0, loop
    li $v0, 1 # print_int syscall
    move $a0, $t2 # copy sum
    syscall
```

- Computing 2^{20}
 - // C code x = 1 << 20

• Computing 2²⁰

// C code x = 1 << 20 # using MIPS
li \$t0, 1 # load 1
sll \$t0, \$t0, 20
shift left by 20 places

- Computing 2²⁰
 - // C code x = 1 << 20

using MIPS
li \$t0, 1 # load 1
sll \$t0, \$t0, 20
shift left by 20 places

• computing $n \times 2^{10}$

• Computing 2²⁰

// C code x = 1 << 20 # using MIPS
li \$t0, 1 # load 1
sll \$t0, \$t0, 20
shift left by 20 places

computing n × 2¹⁰
 // C code
 x = n << 10

using MIPS
assume \$t0 contains n
sll \$t1, \$t0, 10

• Computing 2²⁰

// C code x = 1 << 20 # using MIPS
li \$t0, 1 # load 1
sll \$t0, \$t0, 20
shift left by 20 places

• computing n × 2¹⁰ // C code x = n << 10

• computing $\lfloor n/2^4 \rfloor$

using MIPS
assume \$t0 contains n
sll \$t1, \$t0, 10

- Computing 2²⁰
 - // C code x = 1 << 20
- computing $n \times 2^{10}$ // C code x = n << 10
- computing [n/2⁴]
 // C code
 x = n >> 4

using MIPS
li \$t0, 1 # load 1
sll \$t0, \$t0, 20
shift left by 20 places

using MIPS
assume \$t0 contains n
sll \$t1, \$t0, 10

using MIPS
assume \$t0 contains n
srl \$t1, \$t0, 4

¹image src: https://icarus.cs.weber.edu/-dab/cs1410/textbook/2.Core/bitops.html

Getting *i*-th bit:

¹image src: https://icarus.cs.weber.edu/-dab/cs1410/textbook/2.Core/bitops.html

Getting i-th bit:x & $(1 \ll i)$

¹image src: https://icarus.cs.weber.edu/-dab/cs1410/textbook/2.Core/bitops.html

Getting i-th bit:x & (1 << i)

• Bitwise or operation

¹ image src: https://icarus.cs.weber.edu/~dab/cs1410/textbook/2.Core/bitops.html

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

Getting i-th bit:x & $(1 \ll i)$

• Bitwise or operation

Setting *i*-th bit:

¹ image src: https://icarus.cs.weber.edu/~dab/cs1410/textbook/2.Core/bitops.html

Setting i-th bit:x | (1 << i)

• Ex. What happens with n & (n - 1)?

¹ image src: https://icarus.cs.weber.edu/~dab/cs1410/textbook/2.Core/bitops.html

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output				
A	A B				
0	0	0			
0	1	1			
1	0	1			
1	1	0			

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output	
А	A B	
0	0	0
0	1	1
1	0	1
1	1	0

Notice that: $X \oplus 0 = X$ and $X \oplus 1 = \overline{X}$

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output				
А	A B				
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Notice that: $X \oplus 0 = X$ and $X \oplus 1 = \overline{X}$

• Bitwise xor operation Flipping i-th bit:

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output				
А	A B				
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Notice that: $X \oplus 0 = X$ and $X \oplus 1 = \overline{X}$

• Bitwise xor operation Flipping i-th bit:x ^ (1 << i)

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output				
А	A B				
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Notice that: $X \oplus 0 = X$ and $X \oplus 1 = \overline{X}$

- Bitwise xor operation Flipping i-th bit:x ^ (1 << i)
- Ex. What is output of: n ^ OXAAAAAAAA?

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output				
А	A B				
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Notice that: $X \oplus 0 = X$ and $X \oplus 1 = \overline{X}$

- Bitwise xor operation Flipping i-th bit:x ^ (1 << i)
- Ex. What is output of: n ^ OXAAAAAAAA?
- Ex. What is output of: $n \circ 0x55555555?$

• The xor operation

EX-OR (X-OR) Gate Truth Table

Inp	Output				
А	A B				
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Notice that: $X \oplus 0 = X$ and $X \oplus 1 = \overline{X}$

- Bitwise xor operation Flipping i-th bit:x ^ (1 << i)
- Ex. What is output of: n ^ OXAAAAAAAA?
- Ex. What is output of: $n \cap 0x55555555?$
- Ex. What is output of: n ^ OxFFFFFFF?

• Getting NOTHING out of anything

¹image src: https://en.wikipedia.org/wiki/XOR_swap_algorithm

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

• Getting NOTHING out of anything: $X \oplus X = 0$

¹image src: https://en.wikipedia.org/wiki/XOR_swap_algorithm

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

• Getting NOTHING out of anything: $X \oplus X = 0$

• Swapping values of two variables

¹image src: https://en.wikipedia.org/wiki/XOR_swap_algorithm RN Dutta & S Sarkar (ACMU, ISI) Computer Organization September 1, 2022

• Getting NOTHING out of anything: $X \oplus X = 0$

• Swapping values of two variables

		X	У		
Operation	Meaning	1010 ⊕	0011	=	$1001 \rightarrow x$
$a = a \oplus b$	$a = A \oplus B$	1001 ⊕	0011	=	$1010 \rightarrow y$
$b=b\oplus a$	$b = B \oplus (A \oplus B) = A$	1001 ⊕	1010	=	$0011 \rightarrow x$
$a=a\oplus b$	$a = (A \oplus B) \oplus A = B$	0011	1010		

¹image src: https://en.wikipedia.org/wiki/XOR_swap_algorithm

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

Question 2

Devise an efficient way to obtain 1's complement of an integer. You are restricted from specifying any constant explicitly (cannot do $X \oplus -1$).

Question 2

Devise an efficient way to obtain 1's complement of an integer. You are restricted from specifying any constant explicitly (cannot do $X \oplus -1$).

Question 3

Load a constant value without specifying any constant explicitly.

Question 2

Devise an efficient way to obtain 1's complement of an integer. You are restricted from specifying any constant explicitly (cannot do $X \oplus -1$).

Question 3

Load a constant value without specifying any constant explicitly.

Question 4

Count the number of 1s in an integer.

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization

Question 2

Devise an efficient way to obtain 1's complement of an integer. You are restricted from specifying any constant explicitly (cannot do $X \oplus -1$).

Question 3

Load a constant value without specifying any constant explicitly.

Question 4

Count the number of 1s in an integer.

Question 5

Suppose there are n distinct integers all in the closed interval of [0, n], that is only one number is absent, and all others occur exactly once. Your task is to find the missing number efficiently.

RN Dutta & S Sarkar (ACMU, ISI)

Computer Organization