
Socket Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

October 21, 2022

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



https://ratcoinc.github.io/Networks/

WEB PAGE

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://ratcoinc.github.io/Networks/


What is a Socket?

“A network socket is a software structure within a network node
of a computer network that serves as an endpoint for sending and
receiving data across the network . . . Sockets are created only
during the lifetime of a process of an application running in the
node” – WIKI1

“A socket is a communications connection point (endpoint) that
you can name and address in a network. Socket programming
shows how to use socket APIs to establish communication links
between remote and local processes” – IBM2

“A socket is one endpoint of a two-way communication link
between two programs running on the network” – ORACLE3

1https://en.wikipedia.org/wiki/Network_socket
2https://www.ibm.com/docs/en/i/7.5?topic=communications-socket-programming
3https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://en.wikipedia.org/wiki/Network_socket
https://www.ibm.com/docs/en/i/7.5?topic=communications-socket-programming
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html


How are Sockets uniquely identified?

A Socket is identified to other hosts by its Socket Address

A Socket Address consists of a Transport Protocol (TCP, UDP,
etc.), an IP Address (IPv4 or IPv6) and a Port Number

A Port Number is a (unique) 16-bit unsigned integer assigned to
one endpoint

ports 0 through 1023 are well-known ports (aka system ports)
ports 1024 through 49151 are registered ports4

ports from 49152 through 65535 are dynamic or private ports;
commonly known as ephemeral ports5

4IANA maintains the official list https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
5ephemeral (adj.): lasting for a very short time or having a very short life cycle

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers


How are Sockets uniquely identified?

A Socket is identified to other hosts by its Socket Address

A Socket Address consists of a Transport Protocol (TCP, UDP,
etc.), an IP Address (IPv4 or IPv6) and a Port Number

A Port Number is a (unique) 16-bit unsigned integer assigned to
one endpoint

ports 0 through 1023 are well-known ports (aka system ports)
ports 1024 through 49151 are registered ports4

ports from 49152 through 65535 are dynamic or private ports;
commonly known as ephemeral ports5

4IANA maintains the official list https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
5ephemeral (adj.): lasting for a very short time or having a very short life cycle

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers


How are Sockets uniquely identified?

A Socket is identified to other hosts by its Socket Address

A Socket Address consists of a Transport Protocol (TCP, UDP,
etc.), an IP Address (IPv4 or IPv6) and a Port Number

A Port Number is a (unique) 16-bit unsigned integer assigned to
one endpoint

ports 0 through 1023 are well-known ports (aka system ports)
ports 1024 through 49151 are registered ports4

ports from 49152 through 65535 are dynamic or private ports;
commonly known as ephemeral ports5

4IANA maintains the official list https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
5ephemeral (adj.): lasting for a very short time or having a very short life cycle

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers


How are Sockets uniquely identified?

A Socket is identified to other hosts by its Socket Address

A Socket Address consists of a Transport Protocol (TCP, UDP,
etc.), an IP Address (IPv4 or IPv6) and a Port Number

A Port Number is a (unique) 16-bit unsigned integer assigned to
one endpoint

ports 0 through 1023 are well-known ports (aka system ports)
ports 1024 through 49151 are registered ports4

ports from 49152 through 65535 are dynamic or private ports;
commonly known as ephemeral ports5

4IANA maintains the official list https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
5ephemeral (adj.): lasting for a very short time or having a very short life cycle

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers


Why another address?

TCP/IP Layer

Common Protocols Data Packet Address Objective

Application

TELNET, HTTP, DHCP,
PING, FTP, . . . Message Application

Specific

Transport

TCP, UDP, . . . Segment/Datagram Port

Network

IP, ARP, TCMP, . . . Datagram Logical (IP)

Data-Link
Physical

Ethernet, WiFi, . . . Frame
Bits Physical(MAC) identification

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols

Data Packet Address Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . .

Message Application
Specific

Transport TCP, UDP, . . .

Segment/Datagram Port

Network IP, ARP, TCMP, . . .

Datagram Logical (IP)

Data-Link
Physical Ethernet, WiFi, . . .

Frame
Bits Physical(MAC) identification

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols Data Packet

Address Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . . Message

Application
Specific

Transport TCP, UDP, . . . Segment/Datagram

Port

Network IP, ARP, TCMP, . . . Datagram

Logical (IP)

Data-Link
Physical Ethernet, WiFi, . . . Frame

Bits

Physical(MAC) identification

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols Data Packet Address

Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . . Message Application

Specific

Transport TCP, UDP, . . . Segment/Datagram Port

Network IP, ARP, TCMP, . . . Datagram Logical (IP)

Data-Link
Physical Ethernet, WiFi, . . . Frame

Bits Physical(MAC)

identification

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols Data Packet Address Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . . Message Application

Specific

Transport TCP, UDP, . . . Segment/Datagram Port

Network IP, ARP, TCMP, . . . Datagram Logical (IP)

Data-Link
Physical Ethernet, WiFi, . . . Frame

Bits Physical(MAC) identification

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols Data Packet Address Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . . Message Application

Specific

Transport TCP, UDP, . . . Segment/Datagram Port

Network IP, ARP, TCMP, . . . Datagram Logical (IP) logical organization1

Data-Link
Physical Ethernet, WiFi, . . . Frame

Bits Physical(MAC) identification

1better management, efficient routing

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols Data Packet Address Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . . Message Application

Specific

Transport TCP, UDP, . . . Segment/Datagram Port host-to-host delivery2

Network IP, ARP, TCMP, . . . Datagram Logical (IP) logical organization1

Data-Link
Physical Ethernet, WiFi, . . . Frame

Bits Physical(MAC) identification

2process-to-process, a node can run multiple processes each talking via different protocol
1better management, efficient routing

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Why another address?

TCP/IP Layer Common Protocols Data Packet Address Objective

Application TELNET, HTTP, DHCP,
PING, FTP, . . . Message Application

Specific end-to-end delivery3

Transport TCP, UDP, . . . Segment/Datagram Port host-to-host delivery2

Network IP, ARP, TCMP, . . . Datagram Logical (IP) logical organization1

Data-Link
Physical Ethernet, WiFi, . . . Frame

Bits Physical(MAC) identification

3session control, a process(browser) may have multiple active session(tabs) to same client(google

search), uses application specific URIs
2process-to-process, a node can run multiple processes each talking via different protocol
1better management, efficient routing

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Socket Programming Using C

image src: https://www.ibm.com/docs/en/i/7.

5?topic=programming-how-sockets-work

socket() creates and returns a
socket descriptor representing an end-
point for communications

Servers must bind a unique name
to a socket descriptor using bind() to
make it accessible from the network

listen() call shows willingness to
accept client connection requests
NB: a socket cannot actively initi-
ate any connection requests after a
listen() call

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://www.ibm.com/docs/en/i/7.5?topic=programming-how-sockets-work
https://www.ibm.com/docs/en/i/7.5?topic=programming-how-sockets-work


Socket Programming Using C

image src: https://www.ibm.com/docs/en/i/7.

5?topic=programming-how-sockets-work

The client invokes connect() on a
stream socket to establish a connection
to the server

The server uses accept() to ac-
cept a client connection request
NB: The server must issue bind()
and listen() calls successfully before
accept()

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://www.ibm.com/docs/en/i/7.5?topic=programming-how-sockets-work
https://www.ibm.com/docs/en/i/7.5?topic=programming-how-sockets-work


Socket Programming Using C

image src: https://www.ibm.com/docs/en/i/7.

5?topic=programming-how-sockets-work

When a connection is established
between stream sockets (between client
and server), we can use any of the data
transfer methods of socket APIs such
as send(), recv(), read(), write(),
. . .

Finally, when a server or client
wants to stop operations, it issues a
close() call to release any system
resources acquired by the socket

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://www.ibm.com/docs/en/i/7.5?topic=programming-how-sockets-work
https://www.ibm.com/docs/en/i/7.5?topic=programming-how-sockets-work


The socket() API

#include <sys/socket.h>
int socket(int domain, int type, int protocol);
Return value: On success, a file descriptor for the new socket is
returned, lowest-numbered file descriptor not currently open for the
process. On error, -1 is returned

Parameters:
domain: specifies a communication domain; selects the protocol family
which will be used for communication
common domain values: AF_UNIX (Local communication), AF_INET (IPv4 Internet

protocols), AF_INET6 (IPv6 Internet protocols)

type: specifies the communication semantics commonly used types are:

SOCK_STREAM (sequenced, reliable,two-way, connection-oriented byte streams, TCP),

SOCK_DGRAM (connectionless, unreliable messages of a fixed maximum length, UDP)

protocol: specifies a particular protocol to be used with the socket
usually a 0 is specified to denote the default protocol for the corresponding socket type

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



The bind() API

#include <sys/socket.h>
int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

assigns the address specified by addr to the socket referred to by the
file descriptor sockfd

Return value: On success, zero is returned. On error, -1 is returned

Parameters:
sockfd: a socket file descriptor created with socket()
addr: a pointer to an address structure, actual structure depends on
the socket address family
addrlen: specifies the size, in bytes, of the address structure pointed to
by addr

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



Address Structure for AF_INET

#include <sys/socket.h>
#include <netinet/in.h>
struct sockaddr_in {

sa_family_t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};
/* Internet address */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

1https://man7.org/linux/man-pages/man7/ip.7.html

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://man7.org/linux/man-pages/man7/ip.7.html


Binding a Socket to an Address

struct sockaddr_in sock_addr;
bzero((char *)&sock_addr, sizeof(sock_addr)); //clear
sockfd = socket(AF_INET, SOCK_STREAM, 0);
int portno = 54321;

sock_addr.sin_family = AF_INET;
sock_addr.sin_port = htons(portno);
sock_addr.sin_addr.s_addr = INADDR_ANY;
//sock_addr.sin_addr.s_addr = INADDR_LOOPBACK
//sock_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
bind(sockfd, (struct sockaddr*)&sock_addr, sizeof(sock_addr))

1htons(): converts an unsigned short integer from host byte order to network byte order
2special addresses: INADDR_LOOPBACK (127.0.0.1) always refers to the localhost via the loopback device;

INADDR_ANY (0.0.0.0) means any address for binding; INADDR_BROADCAST (255.255.255.255) means any host
3inet_addr(): converts a IPv4 host address string written in dotted decimal notation, into binary data

in network byte order; require #include <arpa/inet.h>

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



The listen() API

#include <sys/socket.h>
int listen(int sockfd, int backlog);

marks the socket referred to by sockfd as a passive socket, i.e, a socket
to be used to accept incoming connection requests using accept()

Return value: On success, zero is returned. On error, -1 is returned

Parameters:
sockfd: file descriptor that refers to a socket of type, e.g. SOCK_STREAM
backlog: defines the maximum length to which the queue of pending
connections for sockfd may grow. If a connection request arrives when
the queue is full, the client may receive an error with an indication of
ECONNREFUSED or, if the underlying protocol supports retransmission,
the request may be ignored so that a later reattempt succeeds.

1If the backlog value is greater than the value in /proc/sys/net/core/somaxconn, then it is silently capped

to that value. Since Linux 5.4, the default in this file is 4096; in earlier kernels, the default value is 128

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



The accept() API

#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

used with connection-oriented socket types (e.g. SOCK_STREAM). It
extracts the first connection request on the queue of pending
connections for the listening socket sockfd, creates a new connected
socket, and returns a new file descriptor for it.

Return value: On success, returns a file descriptor for the accepted
socket (a nonnegative integer). On error, -1 is returned

1The newly created socket is not in the listening state. The original socket sockfd is unaffected

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



The accept() API

#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

Parameters:
sockfd: a socket created with socket(), bound to a local address with
bind(), and is listening for connections using listen()
addr: a pointer to an address structure of the peer, actual structure
depends on the socket address family
addrlen: a value-result argument; initialized to contain the size (in
bytes) of the structure pointed to by addr; on return it will contain the
actual size of the peer address

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022



The close() API

#include <unistd.h>
int close(int fd);

closes a file descriptor, so that it no longer refers to any file and may be
reused

Return value: returns zero on success. On error, -1 is returned

Parameters:
fd: closes the socket identified by the file descriptor

1https://man7.org/linux/man-pages/man2/close.2.html

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://man7.org/linux/man-pages/man2/close.2.html


The read() API

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

attempts to read up to count bytes from file descriptor fd into the
buffer starting at buf

Return value: On success, the number of bytes read is returned (zero
indicates end of file), and the file position is advanced by this number.
On error, -1 is returned

Parameters:
fd: a file descriptor to read from
buf: pointer to a buffer area (array) to read into
count: maximum number of bytes to read

1https://man7.org/linux/man-pages/man2/read.2.html
2https://man7.org/linux/man-pages/man2/recv.2.html

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/recv.2.html


The write() API

#include <unistd.h>
ssize_t write(int fd, void *buf, size_t count);

writes up to count bytes from buffer starting at buf into the file
descriptor fd

Return value: On success, the number of bytes written is returned.
On error, -1 is returned

Parameters:
fd: a file descriptor to write into
buf: pointer to a buffer area (array) to write from
count: maximum number of bytes to write

1https://man7.org/linux/man-pages/man2/write.2.html
2https://man7.org/linux/man-pages/man2/send.2.html

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

https://man7.org/linux/man-pages/man2/write.2.html
https://man7.org/linux/man-pages/man2/send.2.html


Creating an Echo Server

server1.c

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022

server1.c


Testing the Echo Server

compile and run the server in a terminal; and leave it be
gcc server1.c -o server1 && ./server1

run a telnet1 client in another terminal
telnet <server ip> <server port>
telnet localhost 54321

write anything in telnet
type “quit” (or send ctrl+]) to close the connection

1Telnet is an application protocol used on the Internet or local area network to provide a bidirectional

interactive text-oriented communication facility - WIKI

R N Dutta (ACMU, ISI) Computer Networks October 21, 2022


