
Socket Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

November 3, 2022

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



https://ratcoinc.github.io/Networks/

WEB PAGE

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://ratcoinc.github.io/Networks/


Dealing with Partial Sends

The dispatch methods like write(), send() etc. might not send all
the bytes we asked it to

Due to circumstances beyond our control, the kernel may decide
not to send all the data

The unsent data still resides in our buffer space

It is now our responsibility to send the remaining data

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Dealing with Partial Sends

The dispatch methods like write(), send() etc. might not send all
the bytes we asked it to

Due to circumstances beyond our control, the kernel may decide
not to send all the data

The unsent data still resides in our buffer space

It is now our responsibility to send the remaining data

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Dealing with Partial Sends

One can write a small wrapper function1:
int sendall(int sd, char *buf, int len) {

int total = 0; // how many bytes we've sent
int bytesleft = len; // how many we have left to send

while(bytesleft > 0) {
int n = send(sd, buf+total, bytesleft, 0);
if (n < 0) { break; } // ERROR sendall failed
total += n;
bytesleft -= n;

}

return total; // return the actual number of bytes sent
}

1Adapted from: https://beej.us/guide/bgnet/html/index-wide.html#sendall

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#sendall


Dealing with Partial Sends

A typical usage1 of our wrapper method:

char buf[1024];
. . .
int len = strlen(buf);
int n = sendall(sd, buf, len);
if (n < len) {

perror("ERROR in sendall");
printf("We only sent %d bytes!\n", n);

}

How does the receiver know when one packet ends and another begins?
Data often needs to be encapsulated2 in case of variable sized packets

1Adapted from: https://beej.us/guide/bgnet/html/index-wide.html#sendall

2Data Encapsulation: https://beej.us/guide/bgnet/html/index-wide.html#sonofdataencap

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#sendall
https://beej.us/guide/bgnet/html/index-wide.html#sonofdataencap


Dealing with Partial Sends

A typical usage1 of our wrapper method:

char buf[1024];
. . .
int len = strlen(buf);
int n = sendall(sd, buf, len);
if (n < len) {

perror("ERROR in sendall");
printf("We only sent %d bytes!\n", n);

}

How does the receiver know when one packet ends and another begins?

Data often needs to be encapsulated2 in case of variable sized packets

1Adapted from: https://beej.us/guide/bgnet/html/index-wide.html#sendall

2Data Encapsulation: https://beej.us/guide/bgnet/html/index-wide.html#sonofdataencap

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#sendall
https://beej.us/guide/bgnet/html/index-wide.html#sonofdataencap


Dealing with Partial Sends

A typical usage1 of our wrapper method:

char buf[1024];
. . .
int len = strlen(buf);
int n = sendall(sd, buf, len);
if (n < len) {

perror("ERROR in sendall");
printf("We only sent %d bytes!\n", n);

}

How does the receiver know when one packet ends and another begins?
Data often needs to be encapsulated2 in case of variable sized packets

1Adapted from: https://beej.us/guide/bgnet/html/index-wide.html#sendall
2Data Encapsulation: https://beej.us/guide/bgnet/html/index-wide.html#sonofdataencap

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#sendall
https://beej.us/guide/bgnet/html/index-wide.html#sonofdataencap


Monitoring Multiple Sockets

By default, read(), recv() calls block (a fancy name for sleep)
the current execution

To monitor multiple sockets (multiple clients) for received data one
possibility is to run multiple processes using fork()
(or multiple threads using pthread) each monitoring one socket
Multiple processes are harder to coordinate, consume more
resources, and sharing data also requires special treatments1

What about using a non-blocking socket
fcntl(sockfd, F_SETFL, O_NONBLOCK);2,3

Write an infinite loop, poll every socket for data, if no data is
available we get -1
This is a bad idea! Program doing busy-wait consumes CPU time

1https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
2https://beej.us/guide/bgnet/html/index-wide.html#blocking
3https://man7.org/linux/man-pages/man2/fcntl.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
https://beej.us/guide/bgnet/html/index-wide.html#blocking
https://man7.org/linux/man-pages/man2/fcntl.2.html


Monitoring Multiple Sockets

By default, read(), recv() calls block (a fancy name for sleep)
the current execution
To monitor multiple sockets (multiple clients) for received data one
possibility is to run multiple processes using fork()
(or multiple threads using pthread) each monitoring one socket

Multiple processes are harder to coordinate, consume more
resources, and sharing data also requires special treatments1

What about using a non-blocking socket
fcntl(sockfd, F_SETFL, O_NONBLOCK);2,3

Write an infinite loop, poll every socket for data, if no data is
available we get -1
This is a bad idea! Program doing busy-wait consumes CPU time

1https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
2https://beej.us/guide/bgnet/html/index-wide.html#blocking
3https://man7.org/linux/man-pages/man2/fcntl.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
https://beej.us/guide/bgnet/html/index-wide.html#blocking
https://man7.org/linux/man-pages/man2/fcntl.2.html


Monitoring Multiple Sockets

By default, read(), recv() calls block (a fancy name for sleep)
the current execution
To monitor multiple sockets (multiple clients) for received data one
possibility is to run multiple processes using fork()
(or multiple threads using pthread) each monitoring one socket
Multiple processes are harder to coordinate, consume more
resources, and sharing data also requires special treatments1

What about using a non-blocking socket
fcntl(sockfd, F_SETFL, O_NONBLOCK);2,3

Write an infinite loop, poll every socket for data, if no data is
available we get -1
This is a bad idea! Program doing busy-wait consumes CPU time

1https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set

2https://beej.us/guide/bgnet/html/index-wide.html#blocking
3https://man7.org/linux/man-pages/man2/fcntl.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
https://beej.us/guide/bgnet/html/index-wide.html#blocking
https://man7.org/linux/man-pages/man2/fcntl.2.html


Monitoring Multiple Sockets

By default, read(), recv() calls block (a fancy name for sleep)
the current execution
To monitor multiple sockets (multiple clients) for received data one
possibility is to run multiple processes using fork()
(or multiple threads using pthread) each monitoring one socket
Multiple processes are harder to coordinate, consume more
resources, and sharing data also requires special treatments1

What about using a non-blocking socket
fcntl(sockfd, F_SETFL, O_NONBLOCK);2,3

Write an infinite loop, poll every socket for data, if no data is
available we get -1
This is a bad idea! Program doing busy-wait consumes CPU time

1https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
2https://beej.us/guide/bgnet/html/index-wide.html#blocking
3https://man7.org/linux/man-pages/man2/fcntl.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
https://beej.us/guide/bgnet/html/index-wide.html#blocking
https://man7.org/linux/man-pages/man2/fcntl.2.html


Monitoring Multiple Sockets

By default, read(), recv() calls block (a fancy name for sleep)
the current execution
To monitor multiple sockets (multiple clients) for received data one
possibility is to run multiple processes using fork()
(or multiple threads using pthread) each monitoring one socket
Multiple processes are harder to coordinate, consume more
resources, and sharing data also requires special treatments1

What about using a non-blocking socket
fcntl(sockfd, F_SETFL, O_NONBLOCK);2,3

Write an infinite loop, poll every socket for data, if no data is
available we get -1

This is a bad idea! Program doing busy-wait consumes CPU time

1https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
2https://beej.us/guide/bgnet/html/index-wide.html#blocking
3https://man7.org/linux/man-pages/man2/fcntl.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
https://beej.us/guide/bgnet/html/index-wide.html#blocking
https://man7.org/linux/man-pages/man2/fcntl.2.html


Monitoring Multiple Sockets

By default, read(), recv() calls block (a fancy name for sleep)
the current execution
To monitor multiple sockets (multiple clients) for received data one
possibility is to run multiple processes using fork()
(or multiple threads using pthread) each monitoring one socket
Multiple processes are harder to coordinate, consume more
resources, and sharing data also requires special treatments1

What about using a non-blocking socket
fcntl(sockfd, F_SETFL, O_NONBLOCK);2,3

Write an infinite loop, poll every socket for data, if no data is
available we get -1
This is a bad idea! Program doing busy-wait consumes CPU time

1https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
2https://beej.us/guide/bgnet/html/index-wide.html#blocking
3https://man7.org/linux/man-pages/man2/fcntl.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://stackoverflow.com/questions/33889868/socket-programming-multiple-connections-forking-or-fd-set
https://beej.us/guide/bgnet/html/index-wide.html#blocking
https://man7.org/linux/man-pages/man2/fcntl.2.html


Monitoring Multiple Sockets

A more elegant solution for monitoring multiple sockets is provided
by poll()1 and select()2 APIs
The OS does all the dirty work and lets us know when a socket is
ready for I/O, while our process can sleep, saving system resources

We keep an array of sockets to monitor along with what kind of
events we want to monitor for
A structure called pollfd is used with poll() API3

struct pollfd { // defined in poll.h
int fd; // the socket descriptor to monitor
short events; // bitmap of events we want to monitor
short revents; // returned bitmap of events that occurred

};
Two common events are POLLIN (socket is ready to be read)
POLLOUT (socket is ready for writting)

1Synchronous I/O Multiplexing: https://beej.us/guide/bgnet/html/index-wide.html#poll
2Old School, more portable: https://beej.us/guide/bgnet/html/index-wide.html#select

3https://man7.org/linux/man-pages/man2/poll.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#poll
https://beej.us/guide/bgnet/html/index-wide.html#select
https://man7.org/linux/man-pages/man2/poll.2.html


Monitoring Multiple Sockets

A more elegant solution for monitoring multiple sockets is provided
by poll()1 and select()2 APIs
The OS does all the dirty work and lets us know when a socket is
ready for I/O, while our process can sleep, saving system resources
We keep an array of sockets to monitor along with what kind of
events we want to monitor for

A structure called pollfd is used with poll() API3

struct pollfd { // defined in poll.h
int fd; // the socket descriptor to monitor
short events; // bitmap of events we want to monitor
short revents; // returned bitmap of events that occurred

};
Two common events are POLLIN (socket is ready to be read)
POLLOUT (socket is ready for writting)

1Synchronous I/O Multiplexing: https://beej.us/guide/bgnet/html/index-wide.html#poll
2Old School, more portable: https://beej.us/guide/bgnet/html/index-wide.html#select

3https://man7.org/linux/man-pages/man2/poll.2.html

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#poll
https://beej.us/guide/bgnet/html/index-wide.html#select
https://man7.org/linux/man-pages/man2/poll.2.html


Monitoring Multiple Sockets

A more elegant solution for monitoring multiple sockets is provided
by poll()1 and select()2 APIs
The OS does all the dirty work and lets us know when a socket is
ready for I/O, while our process can sleep, saving system resources
We keep an array of sockets to monitor along with what kind of
events we want to monitor for
A structure called pollfd is used with poll() API3

struct pollfd { // defined in poll.h
int fd; // the socket descriptor to monitor
short events; // bitmap of events we want to monitor
short revents; // returned bitmap of events that occurred

};

Two common events are POLLIN (socket is ready to be read)
POLLOUT (socket is ready for writting)

1Synchronous I/O Multiplexing: https://beej.us/guide/bgnet/html/index-wide.html#poll
2Old School, more portable: https://beej.us/guide/bgnet/html/index-wide.html#select
3https://man7.org/linux/man-pages/man2/poll.2.html
R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#poll
https://beej.us/guide/bgnet/html/index-wide.html#select
https://man7.org/linux/man-pages/man2/poll.2.html


Monitoring Multiple Sockets

A more elegant solution for monitoring multiple sockets is provided
by poll()1 and select()2 APIs
The OS does all the dirty work and lets us know when a socket is
ready for I/O, while our process can sleep, saving system resources
We keep an array of sockets to monitor along with what kind of
events we want to monitor for
A structure called pollfd is used with poll() API3

struct pollfd { // defined in poll.h
int fd; // the socket descriptor to monitor
short events; // bitmap of events we want to monitor
short revents; // returned bitmap of events that occurred

};
Two common events are POLLIN (socket is ready to be read)
POLLOUT (socket is ready for writting)

1Synchronous I/O Multiplexing: https://beej.us/guide/bgnet/html/index-wide.html#poll
2Old School, more portable: https://beej.us/guide/bgnet/html/index-wide.html#select
3https://man7.org/linux/man-pages/man2/poll.2.html
R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#poll
https://beej.us/guide/bgnet/html/index-wide.html#select
https://man7.org/linux/man-pages/man2/poll.2.html


The poll() API

#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);

waits for one of a given set of file descriptors to become ready for I/O
Return value: On success, returns a nonnegative value denoting the
number of file descriptors on which some event (I/O or error) has
happened. 0 is returned in case of a time-out. On error, -1 is returned.

Parameters:
fds: set of file descriptors to be monitored, negative fds are ignored
nfds: number of items in the fds array
timeout: the number of milliseconds that poll() should block waiting
until either (1) a fd becomes ready, (2) interrupted by a signal handler,
or (3) the timeout expires; a negative timeout waits forever

1https://man7.org/linux/man-pages/man2/poll.2.html
2Note that, a monitored socket also returns ‘ready to read’ status (POLLIN) when a new incoming

connection is ready to be accepted

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://man7.org/linux/man-pages/man2/poll.2.html


Using poll() API

Create an array of pollfd

Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event

Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list

Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field

How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?

- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter

What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?

- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it

List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



Using poll() API

Create an array of pollfd
Put the server socket that listens for incoming connections into the
list, with POLLIN as the monitored event
Invoke a poll() on this list
Note that poll() only returns the number of sockets for which
some events have occurred
Manually scan the entire1 list and look for non-zero revents field
How to add a new fd into the list?- maintain a counter for number
of fds currently present in the list, simply add the new entry in the
end and increment the counter
What about deleting?- can copy the last element in the array
over-top of the one being deleted and decrease the counter; or
simply set the fd field to a negative number and poll() ignores it
List can be dynamically resized with realloc()- doubling/halving

1we may terminate early once the specified number of non-zero revents field has been observed

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022



A Simple Poll Server

Run server4.c, then do two or more telnet to it
(message from one client is sent to all others)

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

server4.c


Sending Data to Multiple Hosts

Broadcasting sends the data to all hosts in the same local
network

For broadcast we need to use UDP (not TCP) and IPv4

SO_BROADCAST needs to be enabled via setsockopt()1

The message can be sent to a specific subnet’s broadcast address
(e.g. 192.168.1.255 for subnet 192.168.1.0/24) or to the global
broadcast address 255.255.255.255, aka INADDR_BROADCAST

Avoid broadcast if possible, instead use multicast

1https://beej.us/guide/bgnet/html/index-wide.html#broadcast-packetshello-world

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

https://beej.us/guide/bgnet/html/index-wide.html#broadcast-packetshello-world


Sending Data to Multiple Hosts

Multicasting sends the data to a group of hosts in the same local
network

Here IP_MULTICAST_IF needs to be enabled via setsockopt()

A multicast group is maintained using IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP through setsockopt()

A class D address (224.0.0.0 to 239.255.255.255) is used as a
multicast address

A host can be part of multiple groups4
1http://www.cs.unc.edu/~jeffay/dirt/FAQ/comp249-001-F99/mcast-socket.html
2https://www.ibm.com/docs/en/aix/7.3?topic=sockets-ip-multicasts
3https://docs.oracle.com/cd/E26502_01/html/E35299/sockets-137.html
4https://stackoverflow.com/questions/9243292/subscribing-to-multiple-multicast-groups-on-one-socket

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

http://www.cs.unc.edu/~jeffay/dirt/FAQ/comp249-001-F99/mcast-socket.html
https://www.ibm.com/docs/en/aix/7.3?topic=sockets-ip-multicasts
https://docs.oracle.com/cd/E26502_01/html/E35299/sockets-137.html
https://stackoverflow.com/questions/9243292/subscribing-to-multiple-multicast-groups-on-one-socket


A Simple Multicast Program

server5.c, client5.c
run the server in one terminal
run the client in two or more terminals
type strings in server, all client prints the message

1Adapted from: https://web.cs.wpi.edu/~claypool/courses/4514-B99/samples/multicast.c

R N Dutta (ACMU, ISI) Computer Networks November 3, 2022

server5.c
client5.c
https://web.cs.wpi.edu/~claypool/courses/4514-B99/samples/multicast.c

