
Network Programming
Socket Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

October 9, 2023

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



https://www.isical.ac.in/~rathin_r/uploads/CN/

WEB PAGE

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/


Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

socket() creates and returns a socket
descriptor representing an endpoint for
communications

Servers must bind a unique name to a
socket descriptor using bind() to make it
accessible from the network

listen() call shows willingness to accept
client connection requests

NB: a socket cannot actively initiate any
connection requests after a listen() call

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Meanwhile on the client side:

A socket file descriptor is created similarly

(Optionally) the client tries to bind it

The client invokes a connect() request on
the stream socket to establish a connection
to the server

The request arrives at the server

Server may choose to honor that request
via accept()

The client is informed that the connection
request has been accepted

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Meanwhile on the client side:

A socket file descriptor is created similarly

(Optionally) the client tries to bind it

The client invokes a connect() request on
the stream socket to establish a connection
to the server

The request arrives at the server

Server may choose to honor that request
via accept()

The client is informed that the connection
request has been accepted

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Meanwhile on the client side:

A socket file descriptor is created similarly

(Optionally) the client tries to bind it

The client invokes a connect() request on
the stream socket to establish a connection
to the server

The request arrives at the server

Server may choose to honor that request
via accept()

The client is informed that the connection
request has been accepted

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Meanwhile on the client side:

A socket file descriptor is created similarly

(Optionally) the client tries to bind it

The client invokes a connect() request on
the stream socket to establish a connection
to the server

The request arrives at the server

Server may choose to honor that request
via accept()

The client is informed that the connection
request has been accepted

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Meanwhile on the client side:

A socket file descriptor is created similarly

(Optionally) the client tries to bind it

The client invokes a connect() request on
the stream socket to establish a connection
to the server

The request arrives at the server

Server may choose to honor that request
via accept()

The client is informed that the connection
request has been accepted

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Now client and server can communicate
with each other

We can use read(), write() APIs for
stream I/O

There are socket specific APIs1 such as
send(), recv(), sendto(), recvfrom(),
sendmsg(), recvmsg()

1See man pages: https://linux.die.net/man/2/send and https://linux.die.net/man/2/recv

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://linux.die.net/man/2/send
https://linux.die.net/man/2/recv


Socket Programming Using C

socket()

Server

bind()

listen()

socket()

Client

bind()

connect()

accept()

send/receive
data

send/receive
data

close() close()

Finally, when a server or client wants to
stop operations, it issues a close() call to
release any system resources acquired by
the socket

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



The socket() API

#include <sys/socket.h>
int socket(int domain, int type, int protocol);

Return value: On success, a file descriptor (some positive number) for
the new socket is returned. On error, -1 is returned

Parameters:
domain: specifies a protocol family (communication domain), e.g.

protocol family description

AF_UNIX Local inter-process communication

AF_INET Remote communication via IPv4 Internet Protocol

AF_INET6 Remote communication via IPv6 Internet Protocol

type: specifies the communication semantics, e.g.
common types description default protocol

SOCK_STREAM sequenced, reliable, two-way, connection-oriented byte streams TCP

SOCK_DGRAM connectionless, unreliable messages of a fixed maximum length UDP

protocol: specifies a particular protocol to be used (0 implies default)
1See man pages: https://man7.org/linux/man-pages/man2/socket.2.html and

https://man7.org/linux/man-pages/man7/socket.7.html

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man7/socket.7.html


The bind() API

#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *addr, socklen_t addrlen);

Binds the address specified by addr to the socket referred to by the file
descriptor sockfd

Return value: On success, zero is returned. On error, -1 is returned

Parameters:
sockfd: a socket file descriptor created with socket()

addr: a pointer to an address structure
actual structure depends on the socket address family

addrlen: specifies the size, in bytes, of the address structure addr

1See man page: https://man7.org/linux/man-pages/man2/bind.2.html

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man2/bind.2.html


Address Structure for AF_INET

#include <sys/socket.h>
#include <netinet/in.h>
struct sockaddr_in {

sa_family_t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* port in network byte order*/
struct in_addr sin_addr; /* internet address */

};
/* Internet address */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

special addresses IP description

INADDR_LOOPBACK 127.0.0.1 localhost

INADDR_ANY 0.0.0.0 any address for binding

INADDR_BROADCAST 255.255.255.255 any host2

1See the man page: https://man7.org/linux/man-pages/man7/ip.7.html
2INADDR_BROADCAST has the same effect on bind as INADDR_ANY for historical reasons

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man7/ip.7.html


Binding a Socket to an Address

int sockfd = socket(AF_INET, SOCK_STREAM, 0); // TCP socket
char IP[] = "127.0.0.1";
int portno = 54321;

struct sockaddr_in sock_addr;
bzero((char *)&sock_addr, sizeof(sock_addr)); // clear

sock_addr.sin_family = AF_INET;
sock_addr.sin_port = htons(portno);
sock_addr.sin_addr.s_addr = inet_addr(IP); // client
// sock_addr.sin_addr.s_addr = INADDR_LOOPBACK // localhost
// sock_addr.sin_addr.s_addr = INADDR_ANY; // server

bind(sockfd, (struct sockaddr*)&sock_addr, sizeof(sock_addr))
1htons(): converts an unsigned short integer from host byte order to network byte order
3inet_addr(): converts a IPv4 host address string written in dotted decimal notation, into binary data

in network byte order; require #include <arpa/inet.h>

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



The listen() API

#include <sys/socket.h>
int listen(int sockfd, int backlog);

Marks the socket referred to by sockfd as a passive socket, i.e, a socket
to be used to accept incoming connection requests using accept()

Return value: On success, zero is returned. On error, -1 is returned

Parameters:
sockfd: file descriptor after bind() to a socket type, e.g. SOCK_STREAM

backlog: defines the maximum queue length2 of pending connections
if a connection request arrives when the queue is full, the client may receive
an error with an indication of ECONNREFUSED or,
if the underlying protocol supports retransmission, the request may be
ignored so that a later reattempt succeeds.

1See the man page: https://man7.org/linux/man-pages/man2/listen.2.html
2If the backlog value is greater than the value in /proc/sys/net/core/somaxconn, then it is silently capped

to that value. Since Linux 5.4, the default in this file is 4096; in earlier kernels, the default value is 128

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man2/listen.2.html


The accept() API

#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

Used with connection-oriented socket types (e.g. SOCK_STREAM)
It extracts the first connection request on the queue of pending
connections for the listening socket sockfd
Creates a new connected socket, and returns a new file descriptor for it

The newly created socket is not in the listening state
The original socket sockfd remains unaffected

Return value: On success, returns a file descriptor for the accepted
socket (a nonnegative integer). On error, -1 is returned

1See the man page: https://man7.org/linux/man-pages/man2/accept.2.html

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man2/accept.2.html


The accept() API

#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

Parameters:
sockfd: a file descriptor of a listening socket

addr: a pointer to an address structure of the peer
actual structure depends on the socket address family

addrlen: a call-by-address argument; initialized to contain the size (in
bytes) of the structure pointed to by addr; on return it will contain the
actual size of the peer address

1See the man page: https://man7.org/linux/man-pages/man2/accept.2.html

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man2/accept.2.html


A typical connection accept mechanism

struct sockaddr_in cli_addr;
int cli_addr_len = sizeof(cli_addr);
int accepted_sockfd = accept(sockfd,

(struct sockaddr *)&cli_addr, &cli_addr_len);

Perform I/O on this accepted_sockfd

Let us now study server1.c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

server1.c


A typical connection accept mechanism

struct sockaddr_in cli_addr;
int cli_addr_len = sizeof(cli_addr);
int accepted_sockfd = accept(sockfd,

(struct sockaddr *)&cli_addr, &cli_addr_len);

Perform I/O on this accepted_sockfd

Let us now study server1.c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

server1.c


Exercise 1: Displaying Client Info

Modify the Echo Server program: server1.c
To Print telnet client’s IP and Port address

Solution
printf("IP address is: %s\n", inet_ntoa(cli_addr.sin_addr));
printf("port is: %d\n", (int) ntohs(cli_addr.sin_port));

Simply uncomment the lines 50 and 51 in server1.c

1Use ifconfig -a or ip addr to get local IP address
2Use netstat -na | grep <portno> to get status of that port

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

server1.c
server1.c


Exercise 1: Displaying Client Info

Modify the Echo Server program: server1.c
To Print telnet client’s IP and Port address

Solution
printf("IP address is: %s\n", inet_ntoa(cli_addr.sin_addr));
printf("port is: %d\n", (int) ntohs(cli_addr.sin_port));

Simply uncomment the lines 50 and 51 in server1.c

1Use ifconfig -a or ip addr to get local IP address
2Use netstat -na | grep <portno> to get status of that port
3inet_ntoa() converts the Internet host address given in network byte order, to a string in IPv4

dotted-decimal notation
4ntohs() converts the given unsigned short integer from network byte order to host byte order

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

server1.c
server1.c


The connect() API

#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

Connects the socket referred to by the file descriptor sockfd to the
address specified by addr

Return value: On success, zero is returned. On error, -1 is returned

Parameters:
sockfd: a socket file descriptor created with socket()

addr: a pointer to an address structure
actual structure depends on the socket address family

addrlen: specifies the size, in bytes, of the address structure addr

1See man page: https://man7.org/linux/man-pages/man2/connect.2.html

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://man7.org/linux/man-pages/man2/connect.2.html


Creating a Client

A typical connection request mechanism:

int sockfd = socket(AF_INET, SOCK_STREAM, 0); // TCP socket

struct sockaddr_in serv_addr;
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr=inet_addr("127.0.0.1"); //server IP
serv_addr.sin_port = htons(54321); // server port

connect(sockfd, (struct sockaddr *)&serv_addr,
sizeof(serv_addr))

// read/write using the sockfd

Let us now study client1.c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

client1.c


Creating a Client

A typical connection request mechanism:

int sockfd = socket(AF_INET, SOCK_STREAM, 0); // TCP socket

struct sockaddr_in serv_addr;
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr=inet_addr("127.0.0.1"); //server IP
serv_addr.sin_port = htons(54321); // server port

connect(sockfd, (struct sockaddr *)&serv_addr,
sizeof(serv_addr))

// read/write using the sockfd

Let us now study client1.c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

client1.c


Testing the Client Program

Download client1.c and server1.c

Open a terminal for server process
gcc server1.c -o server && ./server
leave this window open

Open another terminal for client process
gcc client1.c -o client && ./client
send “quit” to stop

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

client1.c
server1.c


Exercise 2

Modify client1.c and server1.c such that

server now takes an optional command-line argument specifying
the port address; if no argument is given it uses the default 54321

client takes two arguments from command-line; the first one is for
the server IP address (in dotted decimal notation) and the second
one for the server port address

⋆ client can also accept any hostname specified in /etc/hosts as a
server address in the first argument

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

client1.c
server1.c


Exercise 2

Modify client1.c and server1.c such that

server now takes an optional command-line argument specifying
the port address; if no argument is given it uses the default 54321

client takes two arguments from command-line; the first one is for
the server IP address (in dotted decimal notation) and the second
one for the server port address

⋆ client can also accept any hostname specified in /etc/hosts as a
server address in the first argument

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

client1.c
server1.c


Exercise 2

Modify client1.c and server1.c such that

server now takes an optional command-line argument specifying
the port address; if no argument is given it uses the default 54321

client takes two arguments from command-line; the first one is for
the server IP address (in dotted decimal notation) and the second
one for the server port address

⋆ client can also accept any hostname specified in /etc/hosts as a
server address in the first argument

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

client1.c
server1.c


Sending an Integer over a Socket

Socket communication uses byte stream
Integer (or anything) needs to interpreted as raw bytes1

Always write machine independent codes:
use htonl(), ntohl(), uint32_t or similar things2

uint32_t number_to_send = 10000; // Put your value
uint32_t converted_num = htonl(number_to_send);
write(socketfd, &converted_num, sizeof(uint32_t));

uint32_t read_num, num;
read(socketfd, &read_num, sizeof(uint32_t));
num = ntohl(read_num); // get the actual value

Other types (e.g. float34) can also be sent in similar fashion

1The process is known as Serialization/Deserialization
2See this discussion: https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c

3Sending float: https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
4Serialization (How to Pack Data): https://beej.us/guide/bgnet/html/#serialization

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c
https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
https://beej.us/guide/bgnet/html/#serialization


Sending an Integer over a Socket

Socket communication uses byte stream
Integer (or anything) needs to interpreted as raw bytes1

Always write machine independent codes:
use htonl(), ntohl(), uint32_t or similar things2

uint32_t number_to_send = 10000; // Put your value
uint32_t converted_num = htonl(number_to_send);
write(socketfd, &converted_num, sizeof(uint32_t));

uint32_t read_num, num;
read(socketfd, &read_num, sizeof(uint32_t));
num = ntohl(read_num); // get the actual value

Other types (e.g. float34) can also be sent in similar fashion

1The process is known as Serialization/Deserialization
2See this discussion: https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c

3Sending float: https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
4Serialization (How to Pack Data): https://beej.us/guide/bgnet/html/#serialization

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c
https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
https://beej.us/guide/bgnet/html/#serialization


Sending an Integer over a Socket

Socket communication uses byte stream
Integer (or anything) needs to interpreted as raw bytes1

Always write machine independent codes:
use htonl(), ntohl(), uint32_t or similar things2

uint32_t number_to_send = 10000; // Put your value
uint32_t converted_num = htonl(number_to_send);
write(socketfd, &converted_num, sizeof(uint32_t));

uint32_t read_num, num;
read(socketfd, &read_num, sizeof(uint32_t));
num = ntohl(read_num); // get the actual value

Other types (e.g. float34) can also be sent in similar fashion

1The process is known as Serialization/Deserialization
2See this discussion: https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c

3Sending float: https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
4Serialization (How to Pack Data): https://beej.us/guide/bgnet/html/#serialization

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c
https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
https://beej.us/guide/bgnet/html/#serialization


Sending an Integer over a Socket

Socket communication uses byte stream
Integer (or anything) needs to interpreted as raw bytes1

Always write machine independent codes:
use htonl(), ntohl(), uint32_t or similar things2

uint32_t number_to_send = 10000; // Put your value
uint32_t converted_num = htonl(number_to_send);
write(socketfd, &converted_num, sizeof(uint32_t));

uint32_t read_num, num;
read(socketfd, &read_num, sizeof(uint32_t));
num = ntohl(read_num); // get the actual value

Other types (e.g. float34) can also be sent in similar fashion

1The process is known as Serialization/Deserialization
2See this discussion: https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c
3Sending float: https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
4Serialization (How to Pack Data): https://beej.us/guide/bgnet/html/#serialization

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://stackoverflow.com/questions/9140409/transfer-integer-over-a-socket-in-c
https://stackoverflow.com/questions/38511305/sending-float-values-on-socket-c-c
https://beej.us/guide/bgnet/html/#serialization


Exercise 3

Modify both the Server and Client programs: server1.c, client1.c

client sends an integer n (32 bit) to the server

server computes f(n) on the received n, where f(n) = n+ 1

server returns computed value to the client

Solution
Take a look at: server2.c, client2.c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

server1.c
client1.c
server2.c
client2.c


Exercise 3

Modify both the Server and Client programs: server1.c, client1.c

client sends an integer n (32 bit) to the server

server computes f(n) on the received n, where f(n) = n+ 1

server returns computed value to the client

Solution
Take a look at: server2.c, client2.c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

server1.c
client1.c
server2.c
client2.c


Serialization of Arbitrary Data Types
An arbitrary datatype can be defined using a structure
Apart from endianness, structures introduces padding
These paddings are machine dependant

On possibility is to create a large byte array and manually serialize
struct ABC {

int a; char b;
};
struct ABC s = {10, 'a'};
uint8_t *buff = (uint8_t*)malloc(sizeof(uint32_t)+sizeof(char));
uint32_t a = htonl(s.a);
memcpy(buff, &a, sizeof(uint32_t));
memcpy(buff+sizeof(uint32_t), &s.b, sizeof(char));

buff = uint32_t char

Better alternative: Google Protocol Buffers12

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Serialization of Arbitrary Data Types
An arbitrary datatype can be defined using a structure
Apart from endianness, structures introduces padding
These paddings are machine dependant
On possibility is to create a large byte array and manually serialize

struct ABC {
int a; char b;

};
struct ABC s = {10, 'a'};
uint8_t *buff = (uint8_t*)malloc(sizeof(uint32_t)+sizeof(char));
uint32_t a = htonl(s.a);
memcpy(buff, &a, sizeof(uint32_t));
memcpy(buff+sizeof(uint32_t), &s.b, sizeof(char));

buff = uint32_t char

Better alternative: Google Protocol Buffers12

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Serialization of Arbitrary Data Types
An arbitrary datatype can be defined using a structure
Apart from endianness, structures introduces padding
These paddings are machine dependant
On possibility is to create a large byte array and manually serialize

struct ABC {
int a; char b;

};
struct ABC s = {10, 'a'};
uint8_t *buff = (uint8_t*)malloc(sizeof(uint32_t)+sizeof(char));
uint32_t a = htonl(s.a);
memcpy(buff, &a, sizeof(uint32_t));
memcpy(buff+sizeof(uint32_t), &s.b, sizeof(char));

buff = uint32_t char

Better alternative: Google Protocol Buffers12

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023



Serialization of Arbitrary Data Types
An arbitrary datatype can be defined using a structure
Apart from endianness, structures introduces padding
These paddings are machine dependant
On possibility is to create a large byte array and manually serialize

struct ABC {
int a; char b;

};
struct ABC s = {10, 'a'};
uint8_t *buff = (uint8_t*)malloc(sizeof(uint32_t)+sizeof(char));
uint32_t a = htonl(s.a);
memcpy(buff, &a, sizeof(uint32_t));
memcpy(buff+sizeof(uint32_t), &s.b, sizeof(char));

buff = uint32_t char

Better alternative: Google Protocol Buffers12

1See: https://github.com/protobuf-c/protobuf-c
2See: https://stackoverflow.com/questions/1577161/passing-a-structure-through-sockets-in-c

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://github.com/protobuf-c/protobuf-c
https://stackoverflow.com/questions/1577161/passing-a-structure-through-sockets-in-c 


Conversing with Multiple Clients

Run different server process/thread for each new client
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_2.pdf#page=15 and

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server3

A better alternative is use poll() or select() APIs
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=9 and

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server4

Multicasting over socket
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=30 and
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server5,

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=client5

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_2.pdf#page=15
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server3
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=9
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server4
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=30
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server5
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=client5


Conversing with Multiple Clients

Run different server process/thread for each new client
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_2.pdf#page=15 and

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server3

A better alternative is use poll() or select() APIs
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=9 and

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server4

Multicasting over socket
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=30 and
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server5,

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=client5

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_2.pdf#page=15
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server3
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=9
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server4
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=30
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server5
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=client5


Conversing with Multiple Clients

Run different server process/thread for each new client
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_2.pdf#page=15 and

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server3

A better alternative is use poll() or select() APIs
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=9 and

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server4

Multicasting over socket
See previous year’s materials:
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=30 and
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server5,

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=client5

R N Dutta (ACMU, ISI) Computer Networks October 9, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_2.pdf#page=15
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server3
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=9
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server4
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/Socket_3.pdf#page=30
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=server5
https://www.isical.ac.in/~rathin_r/uploads/CN/2022/codes.php?fname=client5

