
Network Programming
Simulating Flow Control using Socket Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

October 30, 2023

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/

WEB PAGE

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/

Stop-and-Wait Protocol

Simplest case of sliding window protocols

Client Server

Frame 1

delay

ACK for Frame 1

w
aiting

for
A

C
K

Frame 2

Normal operation

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Stop-and-Wait Protocol

Simplest case of sliding window protocols

Client Server

×
Frame 1

w
aiting

for
A

C
K

Dealing with lost frames

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Stop-and-Wait Protocol

Simplest case of sliding window protocols

Client Server

×
Frame 1

w
aiting

for
A

C
K

�

Dealing with lost frames

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Stop-and-Wait Protocol

Simplest case of sliding window protocols

Client Server

×
Frame 1

w
aiting

for
A

C
K

�

�

Dealing with lost frames

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Stop-and-Wait Protocol

Simplest case of sliding window protocols

Client Server

×
Frame 1

w
aiting

for
A

C
K

�

� Frame 1

Dealing with lost frames

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Prerequisite

Some mechanism for simulating network delays

– making a process wait

Some mechanism to detect a timeout
– monitoring fds using select()

Some mechanism for simulating packet loss
– deterministic/random

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Prerequisite

Some mechanism for simulating network delays
– making a process wait

Some mechanism to detect a timeout
– monitoring fds using select()

Some mechanism for simulating packet loss
– deterministic/random

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Prerequisite

Some mechanism for simulating network delays
– making a process wait

Some mechanism to detect a timeout

– monitoring fds using select()

Some mechanism for simulating packet loss
– deterministic/random

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Prerequisite

Some mechanism for simulating network delays
– making a process wait

Some mechanism to detect a timeout
– monitoring fds using select()

Some mechanism for simulating packet loss
– deterministic/random

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Prerequisite

Some mechanism for simulating network delays
– making a process wait

Some mechanism to detect a timeout
– monitoring fds using select()

Some mechanism for simulating packet loss

– deterministic/random

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Prerequisite

Some mechanism for simulating network delays
– making a process wait

Some mechanism to detect a timeout
– monitoring fds using select()

Some mechanism for simulating packet loss
– deterministic/random

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Making a Process Wait

The simplest way is to keep the process busy doing some ‘useless’
computation/work

int i = 100000 // some large number
while (i--); // keep the process busy
/* busy waiting ended, do useful work */

It is also known as busy waiting
The time spend on the while loop is platform dependent
How to wait for some ‘exact’ amount of time

– utilize the system clock1

time_t before = time(NULL);
while(time(NULL) - before < 10); // wait 10 seconds

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Making a Process Wait

The simplest way is to keep the process busy doing some ‘useless’
computation/work

int i = 100000 // some large number
while (i--); // keep the process busy
/* busy waiting ended, do useful work */

It is also known as busy waiting

The time spend on the while loop is platform dependent
How to wait for some ‘exact’ amount of time

– utilize the system clock1

time_t before = time(NULL);
while(time(NULL) - before < 10); // wait 10 seconds

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Making a Process Wait

The simplest way is to keep the process busy doing some ‘useless’
computation/work

int i = 100000 // some large number
while (i--); // keep the process busy
/* busy waiting ended, do useful work */

It is also known as busy waiting
The time spend on the while loop is platform dependent
How to wait for some ‘exact’ amount of time

– utilize the system clock1

time_t before = time(NULL);
while(time(NULL) - before < 10); // wait 10 seconds

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Making a Process Wait

The simplest way is to keep the process busy doing some ‘useless’
computation/work

int i = 100000 // some large number
while (i--); // keep the process busy
/* busy waiting ended, do useful work */

It is also known as busy waiting
The time spend on the while loop is platform dependent
How to wait for some ‘exact’ amount of time

– utilize the system clock1

time_t before = time(NULL);
while(time(NULL) - before < 10); // wait 10 seconds

1See man page for time(): https://man7.org/linux/man-pages/man2/time.2.html

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

https://man7.org/linux/man-pages/man2/time.2.html

Avoiding Busy Waiting

The last solution wastefully consumes precious CPU resource

A better alternative is to simply block the process for the desired
amount of time, and after the desired wait time has been elapsed
the process resumes its work

UNIX provides sleep() system call1

sleep(10); // wait 10 seconds

Take a look at waiting.c

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

waiting.c

Avoiding Busy Waiting

The last solution wastefully consumes precious CPU resource

A better alternative is to simply block the process for the desired
amount of time, and after the desired wait time has been elapsed
the process resumes its work

UNIX provides sleep() system call1

sleep(10); // wait 10 seconds

Take a look at waiting.c

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

waiting.c

Avoiding Busy Waiting

The last solution wastefully consumes precious CPU resource

A better alternative is to simply block the process for the desired
amount of time, and after the desired wait time has been elapsed
the process resumes its work

UNIX provides sleep() system call1

sleep(10); // wait 10 seconds

Take a look at waiting.c

1See man page for time(): https://man7.org/linux/man-pages/man2/time.2.html

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

waiting.c
https://man7.org/linux/man-pages/man2/time.2.html

Avoiding Busy Waiting

The last solution wastefully consumes precious CPU resource

A better alternative is to simply block the process for the desired
amount of time, and after the desired wait time has been elapsed
the process resumes its work

UNIX provides sleep() system call1

sleep(10); // wait 10 seconds

Take a look at waiting.c

1See man page for time(): https://man7.org/linux/man-pages/man2/time.2.html

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

waiting.c
https://man7.org/linux/man-pages/man2/time.2.html

Avoiding Busy Waiting

The last solution wastefully consumes precious CPU resource

A better alternative is to simply block the process for the desired
amount of time, and after the desired wait time has been elapsed
the process resumes its work

UNIX provides sleep() system call1

sleep(10); // wait 10 seconds

Take a look at waiting.c

1See man page for time(): https://man7.org/linux/man-pages/man2/time.2.html

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

waiting.c
https://man7.org/linux/man-pages/man2/time.2.html

Monitoring File Descriptors

Recall that invoking a read() call indefinitely blocks the current
process until some input arrives, or some error occurs

To avoid this indefinite wait we can monitor a file descriptor for
some desired I/O event
And only invoke read() when some input arrives

For this monitoring we will use the select() API1

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Monitoring File Descriptors

Recall that invoking a read() call indefinitely blocks the current
process until some input arrives, or some error occurs

To avoid this indefinite wait we can monitor a file descriptor for
some desired I/O event
And only invoke read() when some input arrives

For this monitoring we will use the select() API1

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Monitoring File Descriptors

Recall that invoking a read() call indefinitely blocks the current
process until some input arrives, or some error occurs

To avoid this indefinite wait we can monitor a file descriptor for
some desired I/O event
And only invoke read() when some input arrives

For this monitoring we will use the select() API1

1See man page: https://man7.org/linux/man-pages/man2/select.2.html

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

https://man7.org/linux/man-pages/man2/select.2.html

The select() API

#include <sys/select.h>
int select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

Return value: Returns the total number of fds are that ready.
On timeout, zero is returned. On error, -1 is returned.

Parameters:
nfds: set to the highest-numbered file descriptor in any of the three
sets, plus 1
readfds: set of fds that are watched to see if they are ready for reading
writefds: set of fds that are watched to see if they are ready for writing
exceptfds: set of fds that are watched for ‘exceptional conditions’
timeout: specifies the interval that select() should block waiting for a
file descriptor to become ready

1fd_set is a special type that can represent a set of file descriptors

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

The select() API (contd.)

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

void FD_ZERO(fd_set *set);
// removes all file descriptors from the set

void FD_SET(int fd, fd_set *set);
// adds the file descriptor fd to the set

void FD_CLR(int fd, fd_set *set);
// removes the file descriptor fd from the set

int FD_ISSET(int fd, fd_set *set);
// test if a file descriptor is still present in a set

All the three fd sets supplied to the select() call are updated
They must be reinitialized before making successive select() call

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

The select() API (contd.)

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};
void FD_ZERO(fd_set *set);
// removes all file descriptors from the set

void FD_SET(int fd, fd_set *set);
// adds the file descriptor fd to the set

void FD_CLR(int fd, fd_set *set);
// removes the file descriptor fd from the set

int FD_ISSET(int fd, fd_set *set);
// test if a file descriptor is still present in a set

All the three fd sets supplied to the select() call are updated
They must be reinitialized before making successive select() call

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Timed Input

Take a look at timeout.c

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

timeout.c

Stop-and-Wait (without any packet loss)

Take a look at stop_wait_server.c and stop_wait_client.c

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

stop_wait_server.c
stop_wait_client.c

Simulating Frame Loss

A simple strategy is to conditionally send a frame

The condition can be randomized
if(rand() < 0.5 * RAND_MAX) { // some threshold

/* send the frame */
} else { /* do not send */ }

The condition can be deterministic as well
int counter = 0; // global scope or value-result argument
...
if(counter % 3 == 0) { // some condition

/* do not send every third frame*/
} else { /* send the frame */ }
counter = (counter + 1) % 3 // update counter

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Simulating Frame Loss

A simple strategy is to conditionally send a frame

The condition can be randomized
if(rand() < 0.5 * RAND_MAX) { // some threshold

/* send the frame */
} else { /* do not send */ }

The condition can be deterministic as well
int counter = 0; // global scope or value-result argument
...
if(counter % 3 == 0) { // some condition

/* do not send every third frame*/
} else { /* send the frame */ }
counter = (counter + 1) % 3 // update counter

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Simulating Frame Loss

A simple strategy is to conditionally send a frame

The condition can be randomized
if(rand() < 0.5 * RAND_MAX) { // some threshold

/* send the frame */
} else { /* do not send */ }

The condition can be deterministic as well
int counter = 0; // global scope or value-result argument
...
if(counter % 3 == 0) { // some condition

/* do not send every third frame*/
} else { /* send the frame */ }
counter = (counter + 1) % 3 // update counter

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

Practice Problems

Modify stop_wait_client.c to incorporate frame loss
Assume no ACK is lost

Extend these ideas to simulate Go-Back-N Protocol for flow control

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

stop_wait_client.c

Practice Problems

Modify stop_wait_client.c to incorporate frame loss
Assume no ACK is lost

Extend these ideas to simulate Go-Back-N Protocol for flow control

R N Dutta (ACMU, ISI) Computer Networks October 30, 2023

stop_wait_client.c

