
Network Programming
Remote Procedure Call

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

November 1, 2023

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/

WEB PAGE

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://www.isical.ac.in/~rathin_r/uploads/CN/

Remote Procedure Call

Commonly known as RPC
A mechanism to invoke a function call on a remote host with local
parameters, and get back the computed result

Extension of conventional/local procedure call
The called procedure need not exist in the same address space as
the calling Procedure
Two processes may be on the same host, or on different hosts
connected in the same network

Primarily used for distributed client server based applications

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Remote Procedure Call

Commonly known as RPC
A mechanism to invoke a function call on a remote host with local
parameters, and get back the computed result

Extension of conventional/local procedure call
The called procedure need not exist in the same address space as
the calling Procedure
Two processes may be on the same host, or on different hosts
connected in the same network

Primarily used for distributed client server based applications

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Remote Procedure Call

Commonly known as RPC
A mechanism to invoke a function call on a remote host with local
parameters, and get back the computed result

Extension of conventional/local procedure call
The called procedure need not exist in the same address space as
the calling Procedure
Two processes may be on the same host, or on different hosts
connected in the same network

Primarily used for distributed client server based applications

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

How RPC Works

Server runs a listener
daemon service

Upon receiving an RPC
request from client, server
executes the procedure and
returns the result

From invoking an RPC
call, until the reply returns,
the client process is blocked

1image src:https://docs.oracle.com/cd/E19455-01/805-7224/images/5865.epsi.gif

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://docs.oracle.com/cd/E19455-01/805-7224/images/5865.epsi.gif

RPC Application Development

Client calls a local (stub) version
of the remote procedure

It then packs the arguments etc.
for a network communication

The RPC runtime routines does
the actual network communication

The server stub then unpacks the
procedure details, arguments etc.
and invokes the actual procedure

1image src:https://www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

RPC Application Development

The computed result is returned
to the client in similar fashion

This packing/unpacking business
is formally known as
Marshall/Unmarshall - deals
with serialization of data, byte
ordering etc.

1image src:https://www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

RPC Application Development

It involves three main steps:

Specify the protocol - write stubs, RPC runtimes etc

Write the server program

Write the client program

Fortunately there is rpcgen compiler to rescue us

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

RPC Application Development

It involves three main steps:

Specify the protocol - write stubs, RPC runtimes etc

Write the server program

Write the client program

Fortunately there is rpcgen compiler to rescue us

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs

It uses its own language, very similar to C preprocessor directives
In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers
The definition is written in a special file with a .x extension
Invoke the compiler as: rpcgen rpcprogdef.x
It will generate four files:

rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs
It uses its own language, very similar to C preprocessor directives

In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers
The definition is written in a special file with a .x extension
Invoke the compiler as: rpcgen rpcprogdef.x
It will generate four files:

rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs
It uses its own language, very similar to C preprocessor directives
In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers

The definition is written in a special file with a .x extension
Invoke the compiler as: rpcgen rpcprogdef.x
It will generate four files:

rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs
It uses its own language, very similar to C preprocessor directives
In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers
The definition is written in a special file with a .x extension

Invoke the compiler as: rpcgen rpcprogdef.x
It will generate four files:

rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs
It uses its own language, very similar to C preprocessor directives
In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers
The definition is written in a special file with a .x extension
Invoke the compiler as: rpcgen rpcprogdef.x

It will generate four files:
rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs
It uses its own language, very similar to C preprocessor directives
In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers
The definition is written in a special file with a .x extension
Invoke the compiler as: rpcgen rpcprogdef.x
It will generate four files:

rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Using rpcgen Compiler

A standalone executable program that reads a protocol definition
and automatically generates client and server stubs
It uses its own language, very similar to C preprocessor directives
In the protocol definition, specify the name of the service
procedures, data types of parameters and return arguments along
with unique version and ID numbers
The definition is written in a special file with a .x extension
Invoke the compiler as: rpcgen rpcprogdef.x
It will generate four files:

rpcprogdef_clnt.c – the client stub
rpcprogdef_svc.c – the server stub
rpcprogdef.h – header file of definitions, common to server & client
rpcprogdef_xdr.c – XDR routines that translate each data type
defined in the header file (if required)

The external data representation (XDR) provides the abstraction
needed for machine independent communication

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Example of rpcgen

contents of calc.x:

struct intpair {
int a;
int b;

};

program CALC_PROG {
version CALC_VERS {

int ADD(intpair) = 1;
int SUB(intpair) = 2;

} = 1;
} = 0x23456789;

The procedures are allowed to have
only a single argument1

Use a wrapper for multiple arguments

A remote procedure is uniquely
identified by the triple:
(program no., version no., procedure no.)

Program numbers are 32-bit numbers,
written in hex, choose any number
between 0x20000000 - 0x3FFFFFFF
used for unique assignment of IP ports
Version number and procedure
number are integers, starting from 1
Program and procedure names are
declared with all capital letters

1The newstyle of rpcgen allows procedures to have multiple arguments; use -N option:

https://man.openbsd.org/rpcgen.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

calc.x
https://man.openbsd.org/rpcgen.1

Example of rpcgen

contents of calc.x:

struct intpair {
int a;
int b;

};

program CALC_PROG {
version CALC_VERS {

int ADD(intpair) = 1;
int SUB(intpair) = 2;

} = 1;
} = 0x23456789;

The procedures are allowed to have
only a single argument1

Use a wrapper for multiple arguments
A remote procedure is uniquely
identified by the triple:
(program no., version no., procedure no.)

Program numbers are 32-bit numbers,
written in hex, choose any number
between 0x20000000 - 0x3FFFFFFF
used for unique assignment of IP ports
Version number and procedure
number are integers, starting from 1
Program and procedure names are
declared with all capital letters

1The newstyle of rpcgen allows procedures to have multiple arguments; use -N option:

https://man.openbsd.org/rpcgen.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

calc.x
https://man.openbsd.org/rpcgen.1

Example of rpcgen

contents of calc.x:

struct intpair {
int a;
int b;

};

program CALC_PROG {
version CALC_VERS {

int ADD(intpair) = 1;
int SUB(intpair) = 2;

} = 1;
} = 0x23456789;

The procedures are allowed to have
only a single argument1

Use a wrapper for multiple arguments
A remote procedure is uniquely
identified by the triple:
(program no., version no., procedure no.)

Program numbers are 32-bit numbers,
written in hex, choose any number
between 0x20000000 - 0x3FFFFFFF
used for unique assignment of IP ports

Version number and procedure
number are integers, starting from 1
Program and procedure names are
declared with all capital letters

1The newstyle of rpcgen allows procedures to have multiple arguments; use -N option:

https://man.openbsd.org/rpcgen.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

calc.x
https://man.openbsd.org/rpcgen.1

Example of rpcgen

contents of calc.x:

struct intpair {
int a;
int b;

};

program CALC_PROG {
version CALC_VERS {

int ADD(intpair) = 1;
int SUB(intpair) = 2;

} = 1;
} = 0x23456789;

The procedures are allowed to have
only a single argument1

Use a wrapper for multiple arguments
A remote procedure is uniquely
identified by the triple:
(program no., version no., procedure no.)

Program numbers are 32-bit numbers,
written in hex, choose any number
between 0x20000000 - 0x3FFFFFFF
used for unique assignment of IP ports
Version number and procedure
number are integers, starting from 1
Program and procedure names are
declared with all capital letters

1The newstyle of rpcgen allows procedures to have multiple arguments; use -N option:

https://man.openbsd.org/rpcgen.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

calc.x
https://man.openbsd.org/rpcgen.1

Experiment

use rpcgen to compile the calc.x file: rpcgen calc.x

inspect the generated files

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

calc.x

Defining the RPC Server and Client

The service side will have to register the procedures that may be called
by the client and receive and return any data required for processing

The client application call the remote procedure pass any required data
and will receive the returned data

to get a template for client and server, run: rpcgen -a calc.x

inspect the new files

1The -a option generates all the files including sample code for client and server side and also a make

file: https://man.openbsd.org/rpcgen.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://man.openbsd.org/rpcgen.1

Defining the RPC Server and Client

The service side will have to register the procedures that may be called
by the client and receive and return any data required for processing

The client application call the remote procedure pass any required data
and will receive the returned data

to get a template for client and server, run: rpcgen -a calc.x

inspect the new files

1The -a option generates all the files including sample code for client and server side and also a make

file: https://man.openbsd.org/rpcgen.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://man.openbsd.org/rpcgen.1

Compiling the RPC Server and Client

Fortunately, the -a option of rpcgen also generates a makefile

1image src: https://people.cs.rutgers.edu/~pxk/417/notes/rpc.html

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://people.cs.rutgers.edu/~pxk/417/notes/rpc.html

Compiling the RPC Server and Client

Fortunately, the -a option of rpcgen also generates a makefile

1image src: https://people.cs.rutgers.edu/~pxk/417/notes/rpc.html

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://people.cs.rutgers.edu/~pxk/417/notes/rpc.html

Compiling the RPC Server and Client

Things to keep in mind:
Glibc’s RPC support was deprecated and has been removed in
newer version of UNIX/Linux
There is replacement implementations based on TI-RPC, which
additionally support IPv6
can be installed via: sudo apt install libtirpc*

Modify the generated makefile to add the following two lines:
CFLAGS += -DRPC_SVC_FG
CFLAGS += -I/usr/include/tirpc
LDLIBS += -ltirpc

rpcbind is required to register an RPC service
can be installed via: sudo apt install rpcbind

Use rpcinfo to see running services

1DRPC_SVC_FG will cause our server to run in the foreground, for testing purposes; this is convenient

since we’ll be less likely to forget about it, and it will be easier to kill (no need to look up its process ID)

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Compiling the RPC Server and Client

Things to keep in mind:
Glibc’s RPC support was deprecated and has been removed in
newer version of UNIX/Linux
There is replacement implementations based on TI-RPC, which
additionally support IPv6
can be installed via: sudo apt install libtirpc*

Modify the generated makefile to add the following two lines:
CFLAGS += -DRPC_SVC_FG
CFLAGS += -I/usr/include/tirpc
LDLIBS += -ltirpc

rpcbind is required to register an RPC service
can be installed via: sudo apt install rpcbind

Use rpcinfo to see running services

1DRPC_SVC_FG will cause our server to run in the foreground, for testing purposes; this is convenient

since we’ll be less likely to forget about it, and it will be easier to kill (no need to look up its process ID)

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Compiling and Running the RPC Server and Client

Edit the calc_server.c file to modify the definitions of our
functions simply write a print statements like:
printf("add function called\n ");

Run the makefile to build both server and client
make -f Makefile.calc

If the make utility is not already installed:
sudo apt install make
or run: sudo apt install build-essential

Run the server and client in two different terminals
./calc_server
./calc_client 127.0.0.1

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Writing Actual Codes

In calc_client.c file look for the line:
result_1 = add_1(&add_1_arg, clnt);

Load our add_1_arg intpair with values before the add_1() call:
add_1_arg.a = 123;
add_1_arg.b = 456;

Write an else part of the following if:
if (result_1 == (int *) NULL) {

clnt_perror (clnt, "call failed");
} else {

printf("result = %d\n", *result_1);
}

In calc_server.c file replace our simple printf statement with:
result = argp->a + argp->b;
printf("returning: %d\n", result);

Rebuild (make) and run the server and the client
R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

The Final Codes

The protocol definition file: calc.x

Generate necessary files with rpcgen -a calc.x

The modified files: calc_server.c and calc_client.c

The modified makefile (if required): Makefile.calc

Only the add() part is done; sub() is left as an exercise

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

calc.x
calc_server.c
calc_client.c
Makefile.calc

Sending an Array over RPC

Define a structure containing a static1 array (possibly larger size),
and an integer for actual element count

Save the following as arr.x
struct intarr {

int arr[100];
int n;

};
program SUM_PROG {

version SUM_VERS {
int ADD(intarr) = 1;

} = 1;
} = 0x23456789;

Do rpcgen -a arr.x

1sending dynamic array: https://stackoverflow.com/questions/27460456/how-do-i-send-an-array

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

https://stackoverflow.com/questions/27460456/how-do-i-send-an-array

Sending an Array over RPC

In sum_prog_1() of arr_client.c initialize the intarr members
before the RPC call and print the returned value after it

add_1_arg.n = 4;
add_1_arg.arr[0] = 10;
add_1_arg.arr[1] = 11;
add_1_arg.arr[2] = 32;
add_1_arg.arr[3] = 44;

result_1 = add_1(&add_1_arg, clnt);
if (result_1 == (int *) NULL) {

clnt_perror (clnt, "call failed");
} else {

printf("result = %d\n", *result_1);
}

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

Sending an Array over RPC

In arr_server.c write the following as the body of add_1_svc()

static int result;
result = 0;
for(int i=0; i<argp->n; i++) {

result += argp->arr[i];
}
return &result;

Build (make) and run the server and the client

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

The Final Codes

The protocol definition file: arr.x

Generate necessary files with rpcgen -a arr.x

The modified files: arr_server.c and arr_client.c

The modified makefile (if required): Makefile.arr

R N Dutta (ACMU, ISI) Computer Networks November 1, 2023

arr.x
arr_server.c
arr_client.c
Makefile.arr

