
Introduction to Python Programming

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

August 22, 2023

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 1 / 20

Python Programming Language

Python is a high-level, general-purpose programming language

Created by Guido van Rossum

First public release in 1991 (version 0.9.0)
Python 3.0 came in late 2008, latest stable release is 3.11
Python 3.x is backwards-incompatible (with Python 2.x)

Python is an interpreted language

Pros: free & open source, portable, large library support, . . .

Typical usage: scientific calculations, AI/ML, data science, web
development, database access, network programming, game
Development etc.

Cons: slow speed and heavy memory usage

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 2 / 20

Python Programming Language

Python is a high-level, general-purpose programming language

Created by Guido van Rossum

First public release in 1991 (version 0.9.0)
Python 3.0 came in late 2008, latest stable release is 3.11
Python 3.x is backwards-incompatible (with Python 2.x)

Python is an interpreted language

Pros: free & open source, portable, large library support, . . .

Typical usage: scientific calculations, AI/ML, data science, web
development, database access, network programming, game
Development etc.

Cons: slow speed and heavy memory usage

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 2 / 20

Python Programming Language

Python is a high-level, general-purpose programming language

Created by Guido van Rossum

First public release in 1991 (version 0.9.0)
Python 3.0 came in late 2008, latest stable release is 3.11
Python 3.x is backwards-incompatible (with Python 2.x)

Python is an interpreted language

Pros: free & open source, portable, large library support, . . .

Typical usage: scientific calculations, AI/ML, data science, web
development, database access, network programming, game
Development etc.

Cons: slow speed and heavy memory usage

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 2 / 20

Python Programming Language

Python is a high-level, general-purpose programming language

Created by Guido van Rossum

First public release in 1991 (version 0.9.0)
Python 3.0 came in late 2008, latest stable release is 3.11
Python 3.x is backwards-incompatible (with Python 2.x)

Python is an interpreted language

Pros: free & open source, portable, large library support, . . .

Typical usage: scientific calculations, AI/ML, data science, web
development, database access, network programming, game
Development etc.

Cons: slow speed and heavy memory usage

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 2 / 20

Using Python as a Calculator

Access the Python interpreter

Open IDLE (built-in Integrated Development and Learning
Environment) or
run python3 command in a terminal

Try these out:

((2 + 4)/3) ∗ (5− 8)
(2/4) + (3//2) + (10%4)
3 ∗ ∗2

Determine the results:

3 + 4 * 5 - 6 / 3
- 3 ** 2 ** 3

Refer to the precedence and associativity of the operators

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 3 / 20

Using Python as a Calculator

Access the Python interpreter

Open IDLE (built-in Integrated Development and Learning
Environment) or
run python3 command in a terminal

Try these out:

((2 + 4)/3) ∗ (5− 8)
(2/4) + (3//2) + (10%4)
3 ∗ ∗2

Determine the results:

3 + 4 * 5 - 6 / 3
- 3 ** 2 ** 3

Refer to the precedence and associativity of the operators

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 3 / 20

Using Python as a Calculator

Access the Python interpreter

Open IDLE (built-in Integrated Development and Learning
Environment) or
run python3 command in a terminal

Try these out:

((2 + 4)/3) ∗ (5− 8)
(2/4) + (3//2) + (10%4)
3 ∗ ∗2

Determine the results:

3 + 4 * 5 - 6 / 3
- 3 ** 2 ** 3

Refer to the precedence and associativity of the operators

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 3 / 20

Using Python as a Calculator

Access the Python interpreter

Open IDLE (built-in Integrated Development and Learning
Environment) or
run python3 command in a terminal

Try these out:

((2 + 4)/3) ∗ (5− 8)
(2/4) + (3//2) + (10%4)
3 ∗ ∗2

Determine the results:

3 + 4 * 5 - 6 / 3
- 3 ** 2 ** 3

Refer to the precedence and associativity of the operators

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 3 / 20

Variables

Symbolic name, refers to a memory location containing some value

Python variables are dynamically typed

Appropriate type is determined by the value:
Variables in C/C++/Java etc. are static typed and requires a
declaration

Try out the following:

a = 3

b = 2

c = a / b

type(c)

d = a // b

type(d)

Common built-in types: bool, int, float, str, list, dict etc.

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 4 / 20

Variables

Symbolic name, refers to a memory location containing some value

Python variables are dynamically typed

Appropriate type is determined by the value:
Variables in C/C++/Java etc. are static typed and requires a
declaration

Try out the following:

a = 3

b = 2

c = a / b

type(c)

d = a // b

type(d)

Common built-in types: bool, int, float, str, list, dict etc.

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 4 / 20

Variables

Symbolic name, refers to a memory location containing some value

Python variables are dynamically typed

Appropriate type is determined by the value: use type() to inspect
Variables in C/C++/Java etc. are static typed and requires a
declaration

Try out the following:

a = 3

b = 2

c = a / b

type(c)

d = a // b

type(d)

Common built-in types: bool, int, float, str, list, dict etc.

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 4 / 20

Variables

Symbolic name, refers to a memory location containing some value

Python variables are dynamically typed

Appropriate type is determined by the value: use type() to inspect
Variables in C/C++/Java etc. are static typed and requires a
declaration

Try out the following:

a = 3

b = 2

c = a / b

type(c)

d = a // b

type(d)

Common built-in types: bool, int, float, str, list, dict etc.

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 4 / 20

Object Identity

id() returns the identity of an object

‘identity’ is a unique integer value at any given time
(loosely) it refers to memory address of the stored value
objects with non-overlapping lifetimes may have the same identity

Operators is and is not are used to test object identity

Execute this:

a = 4 / 2

b = 4 // 2

a == b

a is b

c = 3 - 1

b is c

Use type() and id() to explain the output

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 5 / 20

Object Identity

id() returns the identity of an object

‘identity’ is a unique integer value at any given time
(loosely) it refers to memory address of the stored value
objects with non-overlapping lifetimes may have the same identity

Operators is and is not are used to test object identity

Execute this:

a = 4 / 2

b = 4 // 2

a == b

a is b

c = 3 - 1

b is c

Use type() and id() to explain the output

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 5 / 20

Object Identity

id() returns the identity of an object

‘identity’ is a unique integer value at any given time
(loosely) it refers to memory address of the stored value
objects with non-overlapping lifetimes may have the same identity

Operators is and is not are used to test object identity

Execute this:

a = 4 / 2

b = 4 // 2

a == b

a is b

c = 3 - 1

b is c

Use type() and id() to explain the output

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 5 / 20

Strings

String literals can be defined using either single quote or double
quote (but don’t mix them)

Special characters can be escaped (like in C/C++/Java)

Python has many built-in string methods (see the documentation)

len() returns the length (number of characters) of a string

The + operator can be used to concatenate two strings

String comparison can be done simply using the relational
operators: ==, !=, >, >=, <, <=

a = 'hi'

b = "there"

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 6 / 20

Strings

String literals can be defined using either single quote or double
quote (but don’t mix them)

Special characters can be escaped (like in C/C++/Java)

Python has many built-in string methods (see the documentation)

len() returns the length (number of characters) of a string

The + operator can be used to concatenate two strings

String comparison can be done simply using the relational
operators: ==, !=, >, >=, <, <=

a = 'hi'

b = "there"

len(a)

len(b)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 6 / 20

Strings

String literals can be defined using either single quote or double
quote (but don’t mix them)

Special characters can be escaped (like in C/C++/Java)

Python has many built-in string methods (see the documentation)

len() returns the length (number of characters) of a string

The + operator can be used to concatenate two strings

String comparison can be done simply using the relational
operators: ==, !=, >, >=, <, <=

a = 'hi'

b = "there"

len(a)

len(b)

a + ' ' + b

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 6 / 20

Strings

String literals can be defined using either single quote or double
quote (but don’t mix them)

Special characters can be escaped (like in C/C++/Java)

Python has many built-in string methods (see the documentation)

len() returns the length (number of characters) of a string

The + operator can be used to concatenate two strings

String comparison can be done simply using the relational
operators: ==, !=, >, >=, <, <=

a = 'hi'

b = "there"

len(a)

len(b)

a + ' ' + b

'rathin' > 'Rathin'

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 6 / 20

Assignments in Python

Operator = assigns RHS value (evaluates if an expression is given)
to the variable in the LHS

Chained assignments: a = b = 3+2

Multiple assignments: a, b, c = 1, 2, 3

Swap between two variables: a, b = b, a

Shorthand operators like +=, *= etc. are also available

There is no increment/decrement operator in Python

Instead we use something like: i += 1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 7 / 20

Assignments in Python

Operator = assigns RHS value (evaluates if an expression is given)
to the variable in the LHS

Chained assignments: a = b = 3+2

Multiple assignments: a, b, c = 1, 2, 3

Swap between two variables: a, b = b, a

Shorthand operators like +=, *= etc. are also available

There is no increment/decrement operator in Python

Instead we use something like: i += 1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 7 / 20

Assignments in Python

Operator = assigns RHS value (evaluates if an expression is given)
to the variable in the LHS

Chained assignments: a = b = 3+2

Multiple assignments: a, b, c = 1, 2, 3

Swap between two variables: a, b = b, a

Shorthand operators like +=, *= etc. are also available

There is no increment/decrement operator in Python

Instead we use something like: i += 1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 7 / 20

Assignments in Python

Operator = assigns RHS value (evaluates if an expression is given)
to the variable in the LHS

Chained assignments: a = b = 3+2

Multiple assignments: a, b, c = 1, 2, 3

Swap between two variables: a, b = b, a

Shorthand operators like +=, *= etc. are also available

There is no increment/decrement operator in Python

Instead we use something like: i += 1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 7 / 20

Assignments in Python

Operator = assigns RHS value (evaluates if an expression is given)
to the variable in the LHS

Chained assignments: a = b = 3+2

Multiple assignments: a, b, c = 1, 2, 3

Swap between two variables: a, b = b, a

Shorthand operators like +=, *= etc. are also available

There is no increment/decrement operator in Python

Instead we use something like: i += 1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 7 / 20

Assignments in Python

Operator = assigns RHS value (evaluates if an expression is given)
to the variable in the LHS

Chained assignments: a = b = 3+2

Multiple assignments: a, b, c = 1, 2, 3

Swap between two variables: a, b = b, a

Shorthand operators like +=, *= etc. are also available

There is no increment/decrement operator in Python

Instead we use something like: i += 1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 7 / 20

Python Lists

A built-in datatype to hold an ordered collection of items
a = [1, 2, 3] # square brackets denotes a list

Values can be of any type: a = [1, 'hi', 3.0, 1]

A list can be empty as well: a = [] or a = list()

Items are indexed from 0 to n− 1
Accessing items via (valid) index: a[2] # 3rd item

Index can be negative (−n to −1): a[-1] # last item

len() method returns the size of a list: len([1,2,4]) #gives 3

0 1 2 3 4

’a’ ’e’ ’i’ ’o’ ’u’

-5 -4 -3 -2 -1

array length is 5

first index

last index

usual indices

negative indices

element

(at index 3)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists

A built-in datatype to hold an ordered collection of items
a = [1, 2, 3] # square brackets denotes a list

Values can be of any type: a = [1, 'hi', 3.0, 1]

A list can be empty as well: a = [] or a = list()

Items are indexed from 0 to n− 1
Accessing items via (valid) index: a[2] # 3rd item

Index can be negative (−n to −1): a[-1] # last item

len() method returns the size of a list: len([1,2,4]) #gives 3

0 1 2 3 4

’a’ ’e’ ’i’ ’o’ ’u’

-5 -4 -3 -2 -1

array length is 5

first index

last index

usual indices

negative indices

element

(at index 3)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists

A built-in datatype to hold an ordered collection of items
a = [1, 2, 3] # square brackets denotes a list

Values can be of any type: a = [1, 'hi', 3.0, 1]

A list can be empty as well: a = [] or a = list()

Items are indexed from 0 to n− 1
Accessing items via (valid) index: a[2] # 3rd item

Index can be negative (−n to −1): a[-1] # last item

len() method returns the size of a list: len([1,2,4]) #gives 3

0 1 2 3 4

’a’ ’e’ ’i’ ’o’ ’u’

-5 -4 -3 -2 -1

array length is 5

first index

last index

usual indices

negative indices

element

(at index 3)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists

A built-in datatype to hold an ordered collection of items
a = [1, 2, 3] # square brackets denotes a list

Values can be of any type: a = [1, 'hi', 3.0, 1]

A list can be empty as well: a = [] or a = list()

Items are indexed from 0 to n− 1
Accessing items via (valid) index: a[2] # 3rd item

Index can be negative (−n to −1): a[-1] # last item

len() method returns the size of a list: len([1,2,4]) #gives 3

0 1 2 3 4

’a’ ’e’ ’i’ ’o’ ’u’

-5 -4 -3 -2 -1

array length is 5

first index

last index

usual indices

negative indices

element

(at index 3)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists

A built-in datatype to hold an ordered collection of items
a = [1, 2, 3] # square brackets denotes a list

Values can be of any type: a = [1, 'hi', 3.0, 1]

A list can be empty as well: a = [] or a = list()

Items are indexed from 0 to n− 1
Accessing items via (valid) index: a[2] # 3rd item

Index can be negative (−n to −1): a[-1] # last item

len() method returns the size of a list: len([1,2,4]) #gives 3

0 1 2 3 4

’a’ ’e’ ’i’ ’o’ ’u’

-5 -4 -3 -2 -1

array length is 5

first index

last index

usual indices

negative indices

element

(at index 3)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists

A built-in datatype to hold an ordered collection of items
a = [1, 2, 3] # square brackets denotes a list

Values can be of any type: a = [1, 'hi', 3.0, 1]

A list can be empty as well: a = [] or a = list()

Items are indexed from 0 to n− 1
Accessing items via (valid) index: a[2] # 3rd item

Index can be negative (−n to −1): a[-1] # last item

len() method returns the size of a list: len([1,2,4]) #gives 3

0 1 2 3 4

’a’ ’e’ ’i’ ’o’ ’u’

-5 -4 -3 -2 -1

array length is 5

first index

last index

usual indices

negative indices

element

(at index 3)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])

Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists are mutable; we can modify/add/delete items

Modify an item: a[2] = 30

Add a single item:

a.append(22) # adds item to the end

a.insert(2, 'apple') # adds item to the specific index

Add multiple items: a.extend([25,30,33])
Remove a specific item:
a.remove(30) # removes first occurance of 30

Remove from a specific index: del a[1] # deletes 2nd item

Remove and get a specific item:
a.pop(0) # deletes and returns the first item

a.pop() # pops the last item, default index is -1

Two lists can be joined with + operator: [1,2] + [3,4,5]

extend() adds items into same list while joining creates a new one

* operator repeats the list: [1,2,3]*3 # [1,2,3,1,2,3,1,2,3]

Membership test: item in list1 or item not in list1

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place): list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place): list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place): list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place): list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place):

list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place): list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Python Lists (contd.)

Lists can be sliced: a[start:end:step]

Try the following:

a = [10, 20, 30, 40, 50, 60]

a[1:3]

a[:4]

a[3:]

a[:]

a[2::2]

a[::-1]

Updating a slice: a[2:5] = [1, 2, 3]

Deleting a slice: del a[1:4]

Copying a list: list2 = list1.copy() or list2 = list1[:]

Reversing a list (in place): list1.revrse()

Clearing a list: list1.clear() or del list1[:]

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 8 / 20

Switching to Python Scripts

We write Python scripts in some file and save it with .py extension

You can use a simple text editor to write Python programs: gedit,
vim, notepad++, . . .

Or use a powerful IDE: VS Code, Spyder, . . .

Executing Python scripts from terminal: python3 filename.py

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 9 / 20

Basic I/O

Read user input: input(prompt)

Display output:
print(*objects, sep=' ', end='\n', file=None, flush=False)

Save the following into a file and execute the file:
n = input("enter a number: ")

n + 2

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 10 / 20

Basic I/O

Read user input: input(prompt)

Display output:
print(*objects, sep=' ', end='\n', file=None, flush=False)

Save the following into a file and execute the file:
n = input("enter a number: ")

type(n)

n + 2

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 10 / 20

Basic I/O

Read user input: input(prompt)

Display output:
print(*objects, sep=' ', end='\n', file=None, flush=False)

Save the following into a file and execute the file:
n = int(input("enter a number: ")) # type casting

type(n)

n + 2

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 10 / 20

Basic I/O

Read user input: input(prompt)

Display output:
print(*objects, sep=' ', end='\n', file=None, flush=False)

Save the following into a file and execute the file:
n = int(input("enter a number: ")) # type casting

n + 2

type(n)

print('you have entered', n, 'as n', end=' ')

print('and n+2 is', n+2)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 10 / 20

Conditionals

if statement is similar to C/C++/Java

if condition:

stmt_1
...

stmt_n

A block in Python is defined only using its indentation

A colon is there to declare the start of an indented block
A block containing a single statement must also be indented
All statements in a block must have same indentation
(do not mix tab and spaces)
Indentation implies start of a new block
thus we can not arbitrarily indent statements

if b > a:

print("b is greater than a")

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals

if statement is similar to C/C++/Java

if condition:

stmt_1
...

stmt_n

A block in Python is defined only using its indentation

A colon is there to declare the start of an indented block

A block containing a single statement must also be indented
All statements in a block must have same indentation
(do not mix tab and spaces)
Indentation implies start of a new block
thus we can not arbitrarily indent statements

if b > a:

print("b is greater than a")

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals

if statement is similar to C/C++/Java

if condition:

stmt_1
...

stmt_n

A block in Python is defined only using its indentation

A colon is there to declare the start of an indented block
A block containing a single statement must also be indented

All statements in a block must have same indentation
(do not mix tab and spaces)
Indentation implies start of a new block
thus we can not arbitrarily indent statements

if b > a:

print("b is greater than a")

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals

if statement is similar to C/C++/Java

if condition:

stmt_1
...

stmt_n

A block in Python is defined only using its indentation

A colon is there to declare the start of an indented block
A block containing a single statement must also be indented
All statements in a block must have same indentation
(do not mix tab and spaces)

Indentation implies start of a new block
thus we can not arbitrarily indent statements

if b > a:

print("b is greater than a")

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals

if statement is similar to C/C++/Java

if condition:

stmt_1
...

stmt_n

A block in Python is defined only using its indentation

A colon is there to declare the start of an indented block
A block containing a single statement must also be indented
All statements in a block must have same indentation
(do not mix tab and spaces)
Indentation implies start of a new block
thus we can not arbitrarily indent statements

if b > a:

print("b is greater than a")

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals

if statement is similar to C/C++/Java

if condition:

stmt_1
...

stmt_n

A block in Python is defined only using its indentation

A colon is there to declare the start of an indented block
A block containing a single statement must also be indented
All statements in a block must have same indentation
(do not mix tab and spaces)
Indentation implies start of a new block
thus we can not arbitrarily indent statements

if b > a:

print("b is greater than a")

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals (contd.)

Python also has if...else construct

if condition:

stmt_1
...

stmt_n

else: # must have same indentation level as its 'if'

stmt_1 # block may have different indentation
...

stmt_n

Python’s way of doing ternary expressions:
true_expr if condition else false_expr

max_squared = a*a if a > b else b*b

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals (contd.)

Python also has if...else construct

if condition:

stmt_1
...

stmt_n

else: # must have same indentation level as its 'if'

stmt_1 # block may have different indentation
...

stmt_n

Python’s way of doing ternary expressions:
true_expr if condition else false_expr

max_squared = a*a if a > b else b*b

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals (contd.)

Use elif statement to create a chain

if marks > 90:

print('grade A')

elif marks > 80: # 90 >= marks 80

print('grade B')

elif marks > 70: # 80 >= marks 70

print('grade C')

elif marks > 60: # 70 >= marks 60

print('grade D')

elif marks > 50: # 60 >= marks 50

print('grade E')

else: # marks <= 50

print('grade F')

Conditionals can be nested as well

Exercise: Write a program to detect leap-year

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

Conditionals (contd.)

Use elif statement to create a chain

if marks > 90:

print('grade A')

elif marks > 80: # 90 >= marks 80

print('grade B')

elif marks > 70: # 80 >= marks 70

print('grade C')

elif marks > 60: # 70 >= marks 60

print('grade D')

elif marks > 50: # 60 >= marks 50

print('grade E')

else: # marks <= 50

print('grade F')

Conditionals can be nested as well

Exercise: Write a program to detect leap-year

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 11 / 20

A Brain Teaser

Write a program to print the ‘even’/‘odd’ status of a given integer
without using any conditional statements

hint: use n&1 as an index

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 12 / 20

A Brain Teaser

Write a program to print the ‘even’/‘odd’ status of a given integer
without using any conditional statements

hint: use n&1 as an index

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 12 / 20

Loops

Python has two kinds of loop constructs

while loop to repeat a block based on some (termination) condition
for loop to iterate over a collection/iterable

while condition:

stmt_1
...

stmt_n

for loop_var in iterable:

stmt_1
...

stmt_n

Loops can be nested

There are break and continue statements as well

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 13 / 20

Example of Loops

n = int(input("enter an integer: "))

a, b = 0, 1

while a < n:

print(a, end=', ')

a, b = b, a+b

print() # print a newline

words = ['rathin', 'hello', 'book', 'the', 'fifth']

for w in words:

if 'th' in w: # substring test

print(w, len(w))

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 14 / 20

Example of Loops

n = int(input("enter an integer: "))

a, b = 0, 1

while a < n:

print(a, end=', ')

a, b = b, a+b

print() # print a newline

words = ['rathin', 'hello', 'book', 'the', 'fifth']

for w in words:

if 'th' in w: # substring test

print(w, len(w))

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 14 / 20

The range() function

range(stop) # [0, stop)

range(start, stop[, step])

Print the followings:

list(range(10))

list(range(1, 11))

list(range(2, 11, 3))

list(range(0, -10, -2))

Using range() function with for loop

for i in range(5):

print('#' * i)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 15 / 20

The range() function

range(stop) # [0, stop)

range(start, stop[, step])

Print the followings:

list(range(10))

list(range(1, 11))

list(range(2, 11, 3))

list(range(0, -10, -2))

Using range() function with for loop

for i in range(5):

print('#' * i)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 15 / 20

The range() function

range(stop) # [0, stop)

range(start, stop[, step])

Print the followings:

list(range(10))

list(range(1, 11))

list(range(2, 11, 3))

list(range(0, -10, -2))

Using range() function with for loop

for i in range(5):

print('#' * i)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 15 / 20

Using else with Loops

Most often or not, we terminate a loop early (using break)

And immediately outside the loop we test whether the loop has
completed or terminated early

The typical way of doing this is by introducing a flag variable or
directly probe the iteration variable once again with respect to the
loop (termination) condition

The Python provides else block for (both) loops for this purpose

else block is executed only if the loop has terminated normally

for i in range(10):

print(i)

if i==6: # uncomment this

break

else: # indented at the same level as for

print('loop terminated normally')

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 16 / 20

Using else with Loops

Most often or not, we terminate a loop early (using break)

And immediately outside the loop we test whether the loop has
completed or terminated early

The typical way of doing this is by introducing a flag variable or
directly probe the iteration variable once again with respect to the
loop (termination) condition

The Python provides else block for (both) loops for this purpose

else block is executed only if the loop has terminated normally

for i in range(10):

print(i)

if i==6: # uncomment this

break

else: # indented at the same level as for

print('loop terminated normally')

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 16 / 20

Using else with Loops

Most often or not, we terminate a loop early (using break)

And immediately outside the loop we test whether the loop has
completed or terminated early

The typical way of doing this is by introducing a flag variable or
directly probe the iteration variable once again with respect to the
loop (termination) condition

The Python provides else block for (both) loops for this purpose

else block is executed only if the loop has terminated normally

for i in range(10):

print(i)

if i==6: # uncomment this

break

else: # indented at the same level as for

print('loop terminated normally')

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 16 / 20

An example

for i in range(2,n):

if n % i == 0:

print(n, 'equals', i, '*', n//i)

break

else: # loop fully executed

print(n, 'is a prime number')

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 17 / 20

An example

for n in range(2,10):

for i in range(2,n):

if n % i == 0:

print(n, 'equals', i, '*', n//i)

break

else: # loop fully executed

print(n, 'is a prime number')

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 17 / 20

Defining Functions

def function_name(parmeters):

stmt_1
...

stmt_n

There is no return type specified

def add(a, b):

return a + b

. . .

x = add(10, 20)

Multiple values can be returned together

def add_sub(a, b):

return a + b, a - b

. . .

x, y = add_sub(10, 20)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 18 / 20

Defining Functions

def function_name(parmeters):

stmt_1
...

stmt_n

There is no return type specified

def add(a, b):

return a + b

. . .

x = add(10, 20)

Multiple values can be returned together

def add_sub(a, b):

return a + b, a - b

. . .

x, y = add_sub(10, 20)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 18 / 20

Defining Functions

def function_name(parmeters):

stmt_1
...

stmt_n

There is no return type specified

def add(a, b):

return a + b

. . .

x = add(10, 20)

Multiple values can be returned together

def add_sub(a, b):

return a + b, a - b

. . .

x, y = add_sub(10, 20)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 18 / 20

Defining Functions

def function_name(parmeters):

stmt_1
...

stmt_n

There is no return type specified

def add(a, b):

return a + b

. . .

x = add(10, 20)

Multiple values can be returned together

def add_sub(a, b):

return a + b, a - b

. . .

x, y = add_sub(10, 20)

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 18 / 20

Function Examples

import math

...

def dist(x1, y1, x2, y2):

return math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))

...

print(dist(1, 2, 1, 4))

def is_prime(n):

for i in range(2, n):

if n % i == 0:

return False

return True

...

print(is_prime(24))

print(is_prime(49))

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 19 / 20

Function Examples

import math

...

def dist(x1, y1, x2, y2):

return math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))

...

print(dist(1, 2, 1, 4))

def is_prime(n):

for i in range(2, n):

if n % i == 0:

return False

return True

...

print(is_prime(24))

print(is_prime(49))

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 19 / 20

Default Valued Arguments

The function arguments can have some default values

Default value is assumed when no value is given for that parameter

def foo(x = 'nothing'):

print('you have passed', x)

...

print(foo())

print(foo(123))

print(foo('abcd'))

When there are multiple arguments the order is important

def add(x, y, z=0):

print(x, y ,z) # uncomment this

return x + y + z

...

print(add(10, 20))

print(add(5, 6, 7))

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 20 / 20

Default Valued Arguments

The function arguments can have some default values

Default value is assumed when no value is given for that parameter

def foo(x = 'nothing'):

print('you have passed', x)

...

print(foo())

print(foo(123))

print(foo('abcd'))

When there are multiple arguments the order is important

def add(x, y, z=0):

print(x, y ,z) # uncomment this

return x + y + z

...

print(add(10, 20))

print(add(5, 6, 7))

Rathindra Nath Dutta (ACMU, ISI) Day 1: Python recap August 22, 2023 20 / 20

	Control Flow

