
Python Programming
Classes and Graph Traversal

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

August 24, 2023

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 1 / 15

Classes

A means of bundling data and functions together

Almost everything in Python is an object
with its own properties and methods

Class definition is a blueprint
Objects are real instances having some values

Use name of the class to construct new objects

class class_name:

stmt_1
...

stmt_n

...

obj = class_name() # instantiation with class constructor

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 2 / 15

Classes

A means of bundling data and functions together

Almost everything in Python is an object
with its own properties and methods

Class definition is a blueprint
Objects are real instances having some values

Use name of the class to construct new objects

class class_name:

stmt_1
...

stmt_n

...

obj = class_name() # instantiation with class constructor

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 2 / 15

Classes

A means of bundling data and functions together

Almost everything in Python is an object
with its own properties and methods

Class definition is a blueprint
Objects are real instances having some values

Use name of the class to construct new objects

class class_name:

stmt_1
...

stmt_n

...

obj = class_name() # instantiation with class constructor

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 2 / 15

Class Members

A simple example of a class

Creating object members: simply assign value to a (new) variable

Deleting object members: use the del operator

class MyClass:

pass # a filler statement having no effect

...

obj = MyClass() # instantiation

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 3 / 15

Class Members

A simple example of a class

Creating object members: simply assign value to a (new) variable

Deleting object members: use the del operator

class MyClass:

pass # a filler statement having no effect

...

obj = MyClass() # instantiation

obj.x = 123 # dot denotes membership

print(obj.x)

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 3 / 15

Class Members

A simple example of a class

Creating object members: simply assign value to a (new) variable

Deleting object members: use the del operator

class MyClass:

pass # a filler statement having no effect

...

obj = MyClass() # instantiation

obj.x = 123 # dot denotes membership

print(obj.x)

del obj.x

print(obj.x) # error

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 3 / 15

Class Methods

A simple example of a class with methods

Class methods can also access members created (later) outside

class MyClass:

def foo(self): # self points to calling object

print('you have called foo')

def func1(self, x=0): # self is the first parameter

print('you have called func1 with', x)

...

obj = MyClass() # instantiation

obj.foo() # calling member function

obj.func1()

obj.func1(123)

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 4 / 15

Class Methods

A simple example of a class with methods

Class methods can also access members created (later) outside

class MyClass:

def foo(self): # self points to calling object

print('you have called foo')

def func1(self, x=0): # self is the first parameter

print('you have called func1 with', x)

def func2(self):

print('you have called func2')

print('value at a is', self.a) # accessing member

...

obj = MyClass() # instantiation

obj.func2() # error

obj.a = 123

obj.func2()

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 4 / 15

More on Class

All class members are public
There is no concept of private member in Python

To denote a ‘private’ member in Python
Prefix an identifier with underscore: _x, __my_private_var

For initializing class members at the time object creation

def __init__(self): # automatically invoked by constructor

self.x = 123

We may also pass values for object initialization

class Point:

def __init__(self, x, y, z=0):

self.x = x

self.y = y

self.z = z

...

p = Point(1, 2) # Use p.__dict__ to inspect member fields

p = Point(1, 2, 3) # Use p.__dir__() to list all members

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 5 / 15

More on Class

All class members are public
There is no concept of private member in Python

To denote a ‘private’ member in Python
Prefix an identifier with underscore: _x, __my_private_var

For initializing class members at the time object creation

def __init__(self): # automatically invoked by constructor

self.x = 123

We may also pass values for object initialization

class Point:

def __init__(self, x, y, z=0):

self.x = x

self.y = y

self.z = z

...

p = Point(1, 2) # Use p.__dict__ to inspect member fields

p = Point(1, 2, 3) # Use p.__dir__() to list all members

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 5 / 15

More on Class

All class members are public
There is no concept of private member in Python

To denote a ‘private’ member in Python
Prefix an identifier with underscore: _x, __my_private_var

For initializing class members at the time object creation

def __init__(self): # automatically invoked by constructor

self.x = 123

We may also pass values for object initialization

class Point:

def __init__(self, x, y, z=0):

self.x = x

self.y = y

self.z = z

...

p = Point(1, 2) # Use p.__dict__ to inspect member fields

p = Point(1, 2, 3) # Use p.__dir__() to list all members

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 5 / 15

More on Class

All class members are public
There is no concept of private member in Python

To denote a ‘private’ member in Python
Prefix an identifier with underscore: _x, __my_private_var

For initializing class members at the time object creation

def __init__(self): # automatically invoked by constructor

self.x = 123

We may also pass values for object initialization

class Point:

def __init__(self, x, y, z=0):

self.x = x

self.y = y

self.z = z

...

p = Point(1, 2) # Use p.__dict__ to inspect member fields

p = Point(1, 2, 3) # Use p.__dir__() to list all members

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 5 / 15

Defining a Stack Class

Field members:

a list to store items, maybe a top/size variable

Member methods: initialization, push(), pop(), size(),
is empty(), peek()

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 6 / 15

Defining a Stack Class

Field members: a list to store items, maybe a top/size variable

Member methods: initialization, push(), pop(), size(),
is empty(), peek()

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 6 / 15

Defining a Stack Class

Field members: a list to store items, maybe a top/size variable

Member methods:

initialization, push(), pop(), size(),
is empty(), peek()

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 6 / 15

Defining a Stack Class

Field members: a list to store items, maybe a top/size variable

Member methods: initialization, push(), pop(), size(),
is empty(), peek()

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 6 / 15

Defining a Stack Class (contd.)
class Stack:

def __init__(self):

self._arr = []

self._size = 0

def push(self, item):

self._arr.append(item)

self._size += 1

def pop(self):

if self._size == 0:

return None # NULL in python

self._size -= 1

return self._arr.pop() # list method

def size(self):

return self._size

def is_empty(self):

return self._size == 0

def peek(self): # only view

if self._size == 0:

return None

return self._arr[-1]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 6 / 15

Defining a Stack Class (contd.)

s = Stack()

s.push(10)

s.push(20)

print(s.size())

print(s.pop())

print(s.size())

print(s.is_empty())

print(s.peek())

print(s.pop())

print(s.pop())

print(s.is_empty())

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 6 / 15

Implement a queue class

Check for balanced parenthesis (with operands and operators)

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 7 / 15

Implement a queue class

Check for balanced parenthesis (with operands and operators)

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 7 / 15

Class and Instance Variables

Example: object count

class Abc:

count = 0 # shared class variable

def __init__(self, x):

self.x = x # object variable

Abc.count += 1 # use class name to qualify

print(Abc.count, self.x)

Abc(10)

Abc(20)

obj = Abc(30)

print(Abc.count)

print(obj.count) # also possible

print(obj.x)

print(Abc.x) # error

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 8 / 15

Graphs

Nodes: model some real entity/state
Edges: encodes relationship among nodes

There might be weights and other metadata as well

0

1 2

3

4

0 1 2 3 4
0 0 1 1 1 1
1 1 0 1 0 1
2 1 1 0 0 0
3 1 0 0 0 0
4 1 1 0 0 0

0 : [1, 2, 3, 4]
1 : [0, 2, 4]
2 : [0, 1]
3 : [0]
4 : [0, 1]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 9 / 15

Graphs

Nodes: model some real entity/state
Edges: encodes relationship among nodes
There might be weights and other metadata as well

0

1 2

3

4

0 1 2 3 4
0 0 1 1 1 1
1 1 0 1 0 1
2 1 1 0 0 0
3 1 0 0 0 0
4 1 1 0 0 0

0 : [1, 2, 3, 4]
1 : [0, 2, 4]
2 : [0, 1]
3 : [0]
4 : [0, 1]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 9 / 15

Graphs

Nodes: model some real entity/state
Edges: encodes relationship among nodes
There might be weights and other metadata as well

0

1 2

3

4

0 1 2 3 4
0 0 1 1 1 1
1 1 0 1 0 1
2 1 1 0 0 0
3 1 0 0 0 0
4 1 1 0 0 0

0 : [1, 2, 3, 4]
1 : [0, 2, 4]
2 : [0, 1]
3 : [0]
4 : [0, 1]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 9 / 15

Graphs

Nodes: model some real entity/state
Edges: encodes relationship among nodes
There might be weights and other metadata as well

0

1 2

3

4

0 1 2 3 4
0 0 1 1 1 1
1 1 0 1 0 1
2 1 1 0 0 0
3 1 0 0 0 0
4 1 1 0 0 0

0 : [1, 2, 3, 4]
1 : [0, 2, 4]
2 : [0, 1]
3 : [0]
4 : [0, 1]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 9 / 15

Graphs

Nodes: model some real entity/state
Edges: encodes relationship among nodes
There might be weights and other metadata as well

0

1 2

3

4

0 1 2 3 4
0 0 1 1 1 1
1 1 0 1 0 1
2 1 1 0 0 0
3 1 0 0 0 0
4 1 1 0 0 0

0 : [1, 2, 3, 4]
1 : [0, 2, 4]
2 : [0, 1]
3 : [0]
4 : [0, 1]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 9 / 15

Storing Graphs as Adjacency Lists

Field members:

a list of lists to store node adjacency, maybe sizes

Member methods: initialization, add edge()

also maybe is adjacent(), get neighbours(), . . .

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u) # undirected

def is_adjacent(self, u, v):

return v in self._adj_list[u]

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 10 / 15

Storing Graphs as Adjacency Lists

Field members: a list of lists to store node adjacency, maybe sizes

Member methods: initialization, add edge()

also maybe is adjacent(), get neighbours(), . . .

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u) # undirected

def is_adjacent(self, u, v):

return v in self._adj_list[u]

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 10 / 15

Storing Graphs as Adjacency Lists

Field members: a list of lists to store node adjacency, maybe sizes

Member methods:

initialization, add edge()

also maybe is adjacent(), get neighbours(), . . .

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u) # undirected

def is_adjacent(self, u, v):

return v in self._adj_list[u]

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 10 / 15

Storing Graphs as Adjacency Lists

Field members: a list of lists to store node adjacency, maybe sizes

Member methods: initialization, add edge()

also maybe is adjacent(), get neighbours(), . . .

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u) # undirected

def is_adjacent(self, u, v):

return v in self._adj_list[u]

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 10 / 15

Storing Graphs as Adjacency Lists

Field members: a list of lists to store node adjacency, maybe sizes

Member methods: initialization, add edge()

also maybe is adjacent(), get neighbours(), . . .

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u) # undirected

def is_adjacent(self, u, v):

return v in self._adj_list[u]

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 10 / 15

Storing Graphs as Adjacency Lists

Field members: a list of lists to store node adjacency, maybe sizes

Member methods: initialization, add edge()

also maybe is adjacent(), get neighbours(), . . .

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u) # undirected

def is_adjacent(self, u, v):

return v in self._adj_list[u]

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 10 / 15

Breadth First Search

idea + algo

0

1 2

3

4

BFS starting at 0: 0, 1, 2, 3, 4
BFS starting at 1: 1, 0, 2, 4, 3

why queue, keeping track of visited nodes

use of OPEN and CLOSED list

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 11 / 15

Breadth First Search

idea + algo

0

1 2

3

4

BFS starting at 0: 0, 1, 2, 3, 4
BFS starting at 1: 1, 0, 2, 4, 3

why queue, keeping track of visited nodes

use of OPEN and CLOSED list

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 11 / 15

Breadth First Search

idea + algo

0

1 2

3

4

BFS starting at 0: 0, 1, 2, 3, 4
BFS starting at 1: 1, 0, 2, 4, 3

why queue, keeping track of visited nodes

use of OPEN and CLOSED list

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 11 / 15

Procedure BFS()
from my_queue import Queue # to import a Queue library

from graph import Graph # to import a Graph library

...

def BFS(g, source = 0):

OPEN = Queue()

CLOSED = []

OPEN.enqueue(source)

CLOSED.append(source) # visited

while(not OPEN.is_empty()):

u = OPEN.dequeue()

print(u, end=', ') # process node u

neighbours = g.get_neighbours(u)

for v in neighbours:

if v not in CLOSED: # not yet visited

OPEN.enqueue(v)

CLOSED.append(v) # visited

print() # print a newline

...

BFS(g)

BFS(g, 1)
Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 12 / 15

Depth First Search

idea + algo

0

1 2

3

4

DFS starting at 0: 0, 1, 2, 4, 3
DFS starting at 2: 2, 0, 1, 4, 3

recursion: CLOSED must be global/or passed as an argument
pros & cons of recursive methods

why stack

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 13 / 15

Depth First Search

idea + algo

0

1 2

3

4

DFS starting at 0: 0, 1, 2, 4, 3
DFS starting at 2: 2, 0, 1, 4, 3

recursion

: CLOSED must be global/or passed as an argument
pros & cons of recursive methods

why stack

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 13 / 15

Depth First Search

idea + algo

0

1 2

3

4

DFS starting at 0: 0, 1, 2, 4, 3
DFS starting at 2: 2, 0, 1, 4, 3

recursion: CLOSED must be global/or passed as an argument

pros & cons of recursive methods
why stack

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 13 / 15

Depth First Search

idea + algo

0

1 2

3

4

DFS starting at 0: 0, 1, 2, 4, 3
DFS starting at 2: 2, 0, 1, 4, 3

recursion: CLOSED must be global/or passed as an argument
pros & cons of recursive methods

why stack

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 13 / 15

Depth First Search

idea + algo

0

1 2

3

4

DFS starting at 0: 0, 1, 2, 4, 3
DFS starting at 2: 2, 0, 1, 4, 3

recursion: CLOSED must be global/or passed as an argument
pros & cons of recursive methods

why stack

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 13 / 15

Procedure DFS()

Recursive implementation

from graph import Graph # to import a Graph library

...

def DFS(g, source=0, CLOSED=[]):

CLOSED.append(source) # mark as current source as visited

print(source, end=', ') # process current source

neighbors = g.get_neighbours(source)

for v in neighbors:

if v not in CLOSED:

DFS(g, v, CLOSED) # same CLOSED list reference passed

...

DFS(g)

DFS(g, 2)

Exercise: how would you print a newline at the end?

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 14 / 15

Procedure DFS()

Recursive implementation

from graph import Graph # to import a Graph library

...

def DFS(g, source=0, CLOSED=[]):

CLOSED.append(source) # mark as current source as visited

print(source, end=', ') # process current source

neighbors = g.get_neighbours(source)

for v in neighbors:

if v not in CLOSED:

DFS(g, v, CLOSED) # same CLOSED list reference passed

...

DFS(g)

DFS(g, 2)

Exercise: how would you print a newline at the end?

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 14 / 15

Implement the following non-recursive version of DFS

procedure DFS(G, source):
create a stack S

S.push(source)

while S is not empty do
u = S.pop()

if u is not yet visited then
process/print node u
mark source as visited
forall neighbor v of u do

if v is not yet visited then
mark v as visited
S.push(v)

Compare the output of recursive version and non-recursive version

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 15 / 15

Implement the following non-recursive version of DFS

procedure DFS(G, source):
create a stack S

S.push(source)

while S is not empty do
u = S.pop()

if u is not yet visited then
process/print node u
mark source as visited
forall neighbor v of u do

if v is not yet visited then
mark v as visited
S.push(v)

Compare the output of recursive version and non-recursive version

Rathindra Nath Dutta (ACMU, ISI) Day 2: Python Programming August 24, 2023 15 / 15

