
Python Programming
tuple, dict and solving puzzles

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

August 31, 2023

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 1 / 8

https://www.isical.ac.in/~rathin_r/uploads/PyAI/day3.pdf

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 2 / 8

https://www.isical.ac.in/~rathin_r/uploads/PyAI/day3.pdf
https://www.isical.ac.in/~rathin_r/uploads/PyAI/day3.pdf

tuple

Stores ordered collection of items

Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple

x = () # shorthand

x = (10, '20', 30.1, 10)

Accessing items, slicing etc. can be done similarly

print("third element :", x[2])

print("first two elements :", x[:2])

print("last two elements :", x[-2:])

print("joining tuples :", x + x)

print("repeating tuples :", x * 2)

Conversion between types

a = tuple([10, 20, 30])

b = list(x)

c = tuple('abcd')

d = list('abcd')

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 3 / 8

tuple

Stores ordered collection of items

Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple

x = () # shorthand

x = (10, '20', 30.1, 10)

Accessing items, slicing etc. can be done similarly

print("third element :", x[2])

print("first two elements :", x[:2])

print("last two elements :", x[-2:])

print("joining tuples :", x + x)

print("repeating tuples :", x * 2)

Conversion between types

a = tuple([10, 20, 30])

b = list(x)

c = tuple('abcd')

d = list('abcd')

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 3 / 8

tuple

Stores ordered collection of items

Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple

x = () # shorthand

x = (10, '20', 30.1, 10)

Accessing items, slicing etc. can be done similarly

print("third element :", x[2])

print("first two elements :", x[:2])

print("last two elements :", x[-2:])

print("joining tuples :", x + x)

print("repeating tuples :", x * 2)

Conversion between types

a = tuple([10, 20, 30])

b = list(x)

c = tuple('abcd')

d = list('abcd')

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 3 / 8

tuple

Stores ordered collection of items

Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple

x = () # shorthand

x = (10, '20', 30.1, 10)

Accessing items, slicing etc. can be done similarly

print("third element :", x[2])

print("first two elements :", x[:2])

print("last two elements :", x[-2:])

print("joining tuples :", x + x)

print("repeating tuples :", x * 2)

Conversion between types

a = tuple([10, 20, 30])

b = list(x)

c = tuple('abcd')

d = list('abcd')
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 3 / 8

set

Stores unordered collection of distinct hashable1 objects

Implements basic mathematical set operations

s = set() # s = {} creates a dict

x = [10, 20, 30, 40, 10]

y = [40, 50, 60, 70]

A, B = set(x), set(y)

print(A, B)

print(A.union(B))

print(A.intersection(B))

print(A.difference(B))

A.add(100)

B.remove(40)

...

Exercise: report unique items [10, 10, 20, 10, 20, 30, 10, 20, 30, 40]

1https://docs.python.org/3.8/glossary.html#term-hashable
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 4 / 8

https://docs.python.org/3.8/glossary.html#term-hashable

set

Stores unordered collection of distinct hashable1 objects

Implements basic mathematical set operations

s = set() # s = {} creates a dict

x = [10, 20, 30, 40, 10]

y = [40, 50, 60, 70]

A, B = set(x), set(y)

print(A, B)

print(A.union(B))

print(A.intersection(B))

print(A.difference(B))

A.add(100)

B.remove(40)

...

Exercise: report unique items [10, 10, 20, 10, 20, 30, 10, 20, 30, 40]

1https://docs.python.org/3.8/glossary.html#term-hashable
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 4 / 8

https://docs.python.org/3.8/glossary.html#term-hashable

dict

Dictionary is one of the most versatile built-in type in Python

Stores a collection of ⟨key, value⟩ pairs
Denoted as {key1 : value1, key2 : value2, . . . }
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE'}

print(x, "is of type", type(x))

Values may repeat, but keys must be distinct and hashable

x = {1: 'Python', 'two': [1, 2.1, 'abc'], 3.31: 1234 }

print(x)

print(x[1], x['two'], x[3.31]) # indexed by the keys

x[1] = 1111 # updating an item

x['two'].append(123) # modifing a member list

del x[3.31] # deleting an index

print(x)

Explore: len(x), key in x, key not in x, x.clear() etc.

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5 / 8

dict

Dictionary is one of the most versatile built-in type in Python

Stores a collection of ⟨key, value⟩ pairs
Denoted as {key1 : value1, key2 : value2, . . . }
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE'}

print(x, "is of type", type(x))

Values may repeat, but keys must be distinct and hashable

x = {1: 'Python', 'two': [1, 2.1, 'abc'], 3.31: 1234 }

print(x)

print(x[1], x['two'], x[3.31]) # indexed by the keys

x[1] = 1111 # updating an item

x['two'].append(123) # modifing a member list

del x[3.31] # deleting an index

print(x)

Explore: len(x), key in x, key not in x, x.clear() etc.

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5 / 8

dict

Dictionary is one of the most versatile built-in type in Python

Stores a collection of ⟨key, value⟩ pairs
Denoted as {key1 : value1, key2 : value2, . . . }
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE'}

print(x, "is of type", type(x))

Values may repeat, but keys must be distinct and hashable

x = {1: 'Python', 'two': [1, 2.1, 'abc'], 3.31: 1234 }

print(x)

print(x[1], x['two'], x[3.31]) # indexed by the keys

x[1] = 1111 # updating an item

x['two'].append(123) # modifing a member list

del x[3.31] # deleting an index

print(x)

Explore: len(x), key in x, key not in x, x.clear() etc.

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5 / 8

dict

Dictionary is one of the most versatile built-in type in Python

Stores a collection of ⟨key, value⟩ pairs
Denoted as {key1 : value1, key2 : value2, . . . }
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE'}

print(x, "is of type", type(x))

Values may repeat, but keys must be distinct and hashable

x = {1: 'Python', 'two': [1, 2.1, 'abc'], 3.31: 1234 }

print(x)

print(x[1], x['two'], x[3.31]) # indexed by the keys

x[1] = 1111 # updating an item

x['two'].append(123) # modifing a member list

del x[3.31] # deleting an index

print(x)

Explore: len(x), key in x, key not in x, x.clear() etc.

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5 / 8

Iterating a dict

Check the returned values of: x.values(), x.keys(), x.items()

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 6 / 8

Iterating a dict

Check the returned values of: x.values(), x.keys(), x.items()

quantity = {"apple": 1, "orange": 2, "eggs": 3}

count = 0

for v in quantity.values():

count += v

print(count)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 6 / 8

Iterating a dict

Check the returned values of: x.values(), x.keys(), x.items()

quantity = {"apple": 1, "orange": 2, "eggs": 3}

count = 0

for k in quantity.keys():

count += quantity[k]

print(count)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 6 / 8

Iterating a dict

Check the returned values of: x.values(), x.keys(), x.items()

quantity = {"apple": 1, "orange": 2, "eggs": 3}

price = {"apple": 50, "orange": 20, "eggs": 10}

count = 0

total = 0

for k,v in quantity.items():

count += v # quantity[k]

total += price[k] * v

print(count, total)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 6 / 8

Solving the Water Jug Problem

class State:

goal = None # common for all states

capacity1 = None

capacity2 = None

def __init__(self, filled1, filled2):

self.filled1 = filled1

self.filled2 = filled2

State.capacity1 = 40

State.capacity2 = 70

State.goal = 10

start_state = State(0, 0)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

class State:

goal = None # common for all states

capacity1 = None

capacity2 = None

def __init__(self, filled1, filled2):

self.filled1 = filled1

self.filled2 = filled2

State.capacity1 = 40

State.capacity2 = 70

State.goal = 10

start_state = State(0, 0)

print(start_state) # prints object id in hex

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

Printable string representation of an object can be obtained
by overriding: __str__() or __repr__() methods

class State:

...

def __repr__(self): # must return a string

return f'<jug1: {self.filled1}/{State.capacity1},

jug2: {self.filled2}/{State.capacity2},

goal: {State.goal}>' # formatted string

↪→

↪→

def __str__(self):

return self.__repr__() # return the same

State.capacity1 = 40

State.capacity2 = 70

State.goal = 10

start_state = State(0, 0)

print(start_state)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

class State:

...

State.capacity1 = 40

State.capacity2 = 70

State.goal = 10

start_state = State(0, 0)

s1 = State(0, 0)

print(start_state)

print(s1)

print(start_state is s1) # False

print(start_state == s1) # False

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

Implement the rich comparison1 method(s) as per the requirements
x == y calls x.__eq__(y)

class State:

...

def __eq__(self, other): # for comparing two objects

return self.filled1 == other.filled1 and

self.filled2 == other.filled2↪→

State.capacity1 = 40

State.capacity2 = 70

State.goal = 10

start_state = State(0, 0)

s1 = State(0, 0)

print(start_state is s1) # False

print(start_state == s1) # True

https://docs.python.org/3/reference/datamodel.html#object.__lt__

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

https://docs.python.org/3/reference/datamodel.html#object.__lt__

Solving the Water Jug Problem

class State:

...

def make_move(self):

next_states = []

if self.filled1 < State.capacity1: # pour into jug1

s = State(State.capacity1, self.filled2)

next_states.append(s)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

class State:

...

def make_move(self):

next_states = []

if self.filled1 < State.capacity1: # pour into jug1

s = State(State.capacity1, self.filled2)

next_states.append(s)

remaining_capacity1 = State.capacity1 - self.filled1

if remaining_capacity1 >= self.filled2: # empty jug2

into jug1↪→

s = State(self.filled1 + self.filled2, 0)

next_states.append(s)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

class State:

...

def make_move(self):

next_states = []

if self.filled1 < State.capacity1: # pour into jug1

s = State(State.capacity1, self.filled2)

next_states.append(s)

remaining_capacity1 = State.capacity1 - self.filled1

if remaining_capacity1 >= self.filled2: # empty jug2

into jug1↪→

s = State(self.filled1 + self.filled2, 0)

next_states.append(s)

else: # pour as much as possible from jug2 to jug1

s = State(State.capacity1, self.filled2 -

remaining_capacity1)↪→

next_states.append(s)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

class State:

...

def make_move(self):

next_states = []

if self.filled1 < State.capacity1: # pour into jug1

s = State(State.capacity1, self.filled2)

next_states.append(s)

remaining_capacity1 = State.capacity1 - self.filled1

if remaining_capacity1 >= self.filled2: # empty jug2

into jug1↪→

s = State(self.filled1 + self.filled2, 0)

next_states.append(s)

else: # pour as much as possible from jug2 to jug1

s = State(State.capacity1, self.filled2 -

remaining_capacity1)↪→

next_states.append(s)

if self.filled2 < State.capacity2: # pour into jug2

... # symmetric cases

return next_states
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

class State:

...

def is_final(self):

if self.filled1 == State.goal or self.filled2 == State.goal:

return True

return False

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

Complete class: water jug.py

State.capacity1 = 40

State.capacity2 = 70

State.goal = 10

start_state = State(0, 0)

next_states = start_state.make_move()

print(next_states)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug.py

Solving the Water Jug Problem

def find_sol_BFS(source):

OPEN = Queue()

CLOSED = []

OPEN.enqueue(source)

CLOSED.append(source) # visited

while(not OPEN.is_empty()):

u = OPEN.dequeue()

print(u, end=', ') # process node u

if u.is_final():

print("solution found")

break

for v in u.make_move(): # next states

if v not in CLOSED:

OPEN.enqueue(v)

CLOSED.append(v) # visited

else:

print("no sol exists")

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

Solving the Water Jug Problem

How to print the solution path?

Back trace from the goal state to the start state

Keep a parent reference in the state, parent of start state is None

Print the trace (in reverse) when goal is reached

def print_sol_trace(state):

trace = [state]

while True:

if state.parent is None:

print(trace)

break

trace.insert(0, state.parent) # add in the front

state = state.parent

Final code: water jug ver2.py and my queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

How to print the solution path?

Back trace from the goal state to the start state

Keep a parent reference in the state, parent of start state is None

Print the trace (in reverse) when goal is reached

def print_sol_trace(state):

trace = [state]

while True:

if state.parent is None:

print(trace)

break

trace.insert(0, state.parent) # add in the front

state = state.parent

Final code: water jug ver2.py and my queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

How to print the solution path?

Back trace from the goal state to the start state

Keep a parent reference in the state, parent of start state is None

Print the trace (in reverse) when goal is reached

def print_sol_trace(state):

trace = [state]

while True:

if state.parent is None:

print(trace)

break

trace.insert(0, state.parent) # add in the front

state = state.parent

Final code: water jug ver2.py and my queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

How to print the solution path?

Back trace from the goal state to the start state

Keep a parent reference in the state, parent of start state is None

Print the trace (in reverse) when goal is reached

def print_sol_trace(state):

trace = [state]

while True:

if state.parent is None:

print(trace)

break

trace.insert(0, state.parent) # add in the front

state = state.parent

Final code: water jug ver2.py and my queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

How to print the solution path?

Back trace from the goal state to the start state

Keep a parent reference in the state, parent of start state is None

Print the trace (in reverse) when goal is reached

def print_sol_trace(state):

trace = [state]

while True:

if state.parent is None:

print(trace)

break

trace.insert(0, state.parent) # add in the front

state = state.parent

Final code: water jug ver2.py and my queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

How to print the solution path?

Back trace from the goal state to the start state

Keep a parent reference in the state, parent of start state is None

Print the trace (in reverse) when goal is reached

def print_sol_trace(state):

trace = [state]

while True:

if state.parent is None:

print(trace)

break

trace.insert(0, state.parent) # add in the front

state = state.parent

Final code: water jug ver2.py and my queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7 / 8

water_jug_ver2.py
my_queue.py

Practice Problems

River crossing puzzles

Missionaries and cannibals problem

Wolf, goat and cabbage problem

n-Queens problem

n-puzzle problem

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8 / 8

Practice Problems

River crossing puzzles

Missionaries and cannibals problem
Wolf, goat and cabbage problem

n-Queens problem

n-puzzle problem

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8 / 8

Practice Problems

River crossing puzzles

Missionaries and cannibals problem
Wolf, goat and cabbage problem

n-Queens problem

Q

Q

Q

Q

n-puzzle problem

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8 / 8

Practice Problems

River crossing puzzles

Missionaries and cannibals problem
Wolf, goat and cabbage problem

n-Queens problem

n-puzzle problem

1 4 2

6 5

7 3 8

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8 / 8

Practice Problems

River crossing puzzles
Missionaries and cannibals problem
Wolf, goat and cabbage problem

n-Queens problem

n-puzzle problem

1 4 2

6 5

7 3 8

1 4 2

6 5

7 3 8

1 2

6 4 5

7 3 8

1 4 2

6 5

7 3 8

1 4 2

6 3 5

7 8

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8 / 8

