Python Programming

tuple, dict and solving puzzles

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit
Indian Statistical Institute, Kolkata

August 31, 2023

Rathindra Nath Dutta

MU, ISI) Day 3: Python Programming August 31, 2023

1/8

https://www.isical.ac.in/~rathin_r/uploads/PyAl/day3.pdf

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 2/8

https://www.isical.ac.in/~rathin_r/uploads/PyAI/day3.pdf
https://www.isical.ac.in/~rathin_r/uploads/PyAI/day3.pdf

tuple

@ Stores ordered collection of items
e Tuples are immutable: cannot add/delete/modify items

Rathindra Nath Dutta Day 3: Python Programming August 31, 2023 3/8

tuple

@ Stores ordered collection of items

e Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple
x = () # shorthand
x = (10, '20', 30.1, 10)

Rathindra Nath Dutta (ACMU, ISI)

Day 3: Python Programming August 31, 2023

3/8

tuple

@ Stores ordered collection of items

e Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple
x = () # shorthand
x = (10, '20', 30.1, 10)

@ Accessing items, slicing etc. can be done similarly
print("third element :", x[2])
print("first two elements :", x[:2])
print("last two elements :", x[-2:])
print("joining tuples :", x + x)
print ("repeating tuples :", x * 2)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

3/8

tuple

Stores ordered collection of items

Tuples are immutable: cannot add/delete/modify items

x = tuple() # creates an empty tuple

() # shorthand

(10, '20', 30.1, 10)

Accessing items, slicing etc. can be done similarly
print("third element :", x[2])
print("first two elements :", x[:2])
print("last two elements :", x[-2:])
print("joining tuples :", x + x)
print ("repeating tuples :", x * 2)

X

X

o Conversion between types

a = tuple([10, 20, 30])
b = list(x)

c = tuple('abcd')

d = 1list('abcd')

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

3/8

set

e Stores unordered collection of distinct hashable! objects

e Implements basic mathematical set operations

s = set() # s = {} creates a dict
x = [10, 20, 30, 40, 10]
v = [40, 50, 60, 70]

A, B = set(x), set(y)
print (A, B)

print(A.union(B))

print(A.intersection(B))
print(A.difference(B))

A . add(100)

B.remove (40)

'https://docs.python.org/3.8/glossary.html#term-hashable
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

4/8

https://docs.python.org/3.8/glossary.html#term-hashable

set

e Stores unordered collection of distinct hashable! objects

e Implements basic mathematical set operations

s = set() # s = {} creates a dict
x = [10, 20, 30, 40, 10]
v = [40, 50, 60, 70]

A, B = set(x), set(y)
print (A, B)

print(A.union(B))

print(A.intersection(B))
print(A.difference(B))

A . add(100)

B.remove (40)

e Exercise: report unique items [10, 10, 20, 10, 20, 30, 10, 20, 30, 40]

'https://docs.python.org/3.8/glossary.html#term-hashable
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 4/8

https://docs.python.org/3.8/glossary.html#term-hashable

dict

@ Dictionary is one of the most versatile built-in type in Python

e Stores a collection of (key, value) pairs
Denoted as {keyl : valuel, key2:wvalue2, ...}
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE']
print(x, "is of type", type(x))

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5/8

dict

@ Dictionary is one of the most versatile built-in type in Python

e Stores a collection of (key, value) pairs
Denoted as {keyl : valuel, key2:wvalue2, ...}
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE']
print(x, "is of type", type(x))

e Values may repeat, but keys must be distinct and hashable

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5/8

dict

@ Dictionary is one of the most versatile built-in type in Python

e Stores a collection of (key, value) pairs
Denoted as {keyl : valuel, key2:wvalue2, ...}
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE']
print(x, "is of type", type(x))

e Values may repeat, but keys must be distinct and hashable

x = {1: 'Python', 'two': [1, 2.1, 'abc'], 3.31: 1234 }
print(x)

print(x[1], x['two']l, x[3.31]) # <ndezed by the keys
x[1] = 1111 # updating an item

x['two'] .append(123) # modifing a member list

del x[3.31] # deleting an index

print(x)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5/8

dict

@ Dictionary is one of the most versatile built-in type in Python

e Stores a collection of (key, value) pairs
Denoted as {keyl : valuel, key2:wvalue2, ...}
x = {1: 'Python', 2: 'for', 3: 'AI', 4: 'for', 5: 'CUCSE']
print(x, "is of type", type(x))

@ Values may repeat, but keys must be distinct and hashable
x = {1: 'Python', 'two': [1, 2.1, 'abc'], 3.31: 1234 }
print(x)
print(x[1], x['two']l, x[3.31]) # <ndezed by the keys
x[1] = 1111 # updating an item
x['two'] .append(123) # modifing a member list
del x[3.31] # deleting an index
print(x)

e Explore: len(x), key in x, key not in x, x.clear() etc.

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 5/8

[terating a dict

Check the returned values of: x.values(), x.keys(), x.items()

Rathindra Nath Dutta Day 3: Python Programming August 31, 2023 6/8

[terating a dict

Check the returned values of: x.values(), x.keys(), x.items()

quantity = {"apple": 1, "orange": 2, "eggs": 3}
count = 0
for v in quantity.values():
count += v
print (count)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 6/8

[terating a dict

Check the returned values of: x.values(), x.keys(), x.items()

quantity = {"apple": 1, "orange": 2, "eggs": 3}
count = 0
for k in quantity.keysQ:
count += quantity[k]
print (count)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 6/8

[terating a dict

Check the returned values of: x.values(), x.keys(), x.items()

quantity = {"apple": 1, "orange": 2, "eggs": 3}
price = {"apple": 50, "orange": 20, "eggs": 10}
count 0
total = 0O
for k,v in quantity.items():

count += v # quantityl[k]

total += pricelk] * v
print(count, total)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

6/8

Solving the Water Jug Problem

class State:
goal = None # common for all states
capacityl = None
capacity2 = None
def __init__(self, filledl, filled2):
self.filledl = filledl
self.filled2 = filled2

State.capacityl = 40
State.capacity2 = 70
State.goal = 10

start_state = State(0, 0)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

7/8

Solving the Water Jug Problem

class State:
goal = None # common for all states
capacityl
capacity2 = None
def __init__(self, filledl, filled2):
self.filledl = filledl
self.filled2 = filled2

None

State.capacityl = 40
70

State.capacity2
State.goal = 10

start_state = State(0, 0)

print(start_state) # prints object id in hex

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

Solving the Water Jug Problem

Printable string representation of an object can be obtained
by overriding: __str__() or __repr__() methods

class State:

def __repr__(self): # must return a string
return f'<jugl: {self.filledl}/{State.capacityl},
< jug2: {self.filled2}/{State.capacity2},
— goal: {State.goall}>' # formatted string
def __str__(self):
return self.__repr__() # return the same

State.capacityl = 40
State.capacity2
State.goal = 10
start_state = State(0, 0)
print(start_state)

70

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

7/8

Solving the Water Jug Problem

class State:

40
70

State.capacityl
State.capacity2
State.goal = 10

start_state = State(0, 0)
sl = State(0, 0)
print(start_state)
print(s1)

print(start_state is sl1) # False
print(start_state == sl) # False

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming

August 31, 2023

7/8

Solving the Water Jug Problem

Implement the rich comparison! method(s) as per the requirements
x == ycalls x.__eq__(y)

class State:

def eq__(self, other): # for comparing two objects

return self.filledl == other.filledl and
— self.filled2 == other.filled2

40
70

State.capacityl
State.capacity2
State.goal = 10
start_state = State(0, 0)

s1 = State(0, 0)
print(start_state is sl) # False
print(start_state == s1) # True

https://docs.python.org/3/reference/datamodel.htmlffobject._-1t
Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

https://docs.python.org/3/reference/datamodel.html#object.__lt__

Solving the Water Jug Problem
class State:

def make_move(self):
next_states = []
if self.filledl < State.capacityl: # pour into jugil
s = State(State.capacityl, self.filled2)
next_states.append(s)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

Solving the Water Jug Problem
class State:

def make_move(self):
next_states = []
if self.filledl < State.capacityl: # pour into jugil
s = State(State.capacityl, self.filled2)
next_states.append(s)
remaining_capacityl = State.capacityl - self.filledl
if remaining_capacityl >= self.filled2: # empty jug2
— into jugl
s = State(self.filledl + self.filled2, 0)
next_states.append(s)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

Solving the Water Jug Problem

class State:

def make_move(self):
next_states = []
if self.filledl < State.capacityl: # pour into jugil
s = State(State.capacityl, self.filled2)
next_states.append(s)
remaining_capacityl = State.capacityl - self.filledl
if remaining_capacityl >= self.filled2: # empty jug2
— into jugl
s = State(self.filledl + self.filled2, 0)
next_states.append(s)
else: # pour as much as possible from jug2 to jugl
s = State(State.capacityl, self.filled2 -
< remaining_capacityl)
next_states.append(s)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

Solving the Water Jug Problem

class State:

def make_move(self):
next_states = []
if self.filledl < State.capacityl: # pour into jugil
s = State(State.capacityl, self.filled2)
next_states.append(s)
remaining_capacityl = State.capacityl - self.filledl
if remaining_capacityl >= self.filled2: # empty jug2
— into jugl
s = State(self.filledl + self.filled2, 0)
next_states.append(s)
else: # pour as much as possible from jug2 to jugl
s = State(State.capacityl, self.filled2 -
< remaining_capacityl)
next_states.append(s)
if self.filled2 < State.capacity2: # pour into jug2
symmetric cases
return next_states

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

Solving the Water Jug Problem

class State:

def is_final(self):
if self.filledl == State.goal or self.filled2 == State.goal:
return True
return False

Rathindra Nath Dutta J, IS Day 3: Python Programming August 31, 2023 7/8

Solving the Water Jug Problem

Complete class: water_jug.py

40
70

State.capacityl
State.capacity2
State.goal = 10
start_state = State(0, 0)

next_states = Start_state.make_move()
print(next_states)

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming

August 31, 2023

7/8

water_jug.py

Solving the Water Jug Problem

def find_sol_BFS(source):
OPEN = Queue()
CLOSED = []

OPEN. enqueue (source)
CLOSED. append (source) # visited
while(not OPEN.is_empty()):
u = OPEN.dequeue()
print (u, end=', ') # process mode u
if u.is_finalQ):
print("solution found")
break
for v in u.make_move(): # nexzt states
if v not in CLOSED:
OPEN . enqueue (v)
CLOSED.append(v) # visited
else:
print("no sol exists")

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

Solving the Water Jug Problem

e How to print the solution path?

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

e How to print the solution path?

e Back trace from the goal state to the start state

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

e How to print the solution path?
e Back trace from the goal state to the start state

e Keep a parent reference in the state, parent of start state is None

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

e How to print the solution path?
e Back trace from the goal state to the start state
e Keep a parent reference in the state, parent of start state is None

e Print the trace (in reverse) when goal is reached

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 7/8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

e How to print the solution path?

e Back trace from the goal state to the start state

e Keep a parent reference in the state, parent of start state is None

e Print the trace (in reverse) when goal is reached

def print_sol_trace(state):
trace = [state]
while True:
if state.parent is None:
print (trace)
break
trace.insert(0, state.parent) # add in the front
state = state.parent

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

7/8

water_jug_ver2.py
my_queue.py

Solving the Water Jug Problem

e How to print the solution path?

e Back trace from the goal state to the start state

e Keep a parent reference in the state, parent of start state is None

e Print the trace (in reverse) when goal is reached

def print_sol_trace(state):
trace = [state]
while True:
if state.parent is None:
print (trace)
break
trace.insert(0, state.parent) # add in the front
state = state.parent

Final code: water_jug_ver2.py and my_queue.py

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023

7/8

water_jug_ver2.py
my_queue.py

Practice Problems

o River crossing puzzles
e Missionaries and cannibals problem

vth Dutta (U, IS Day 3: Python Programming August 31, 2023 8/8

Practice Problems

o River crossing puzzles

e Missionaries and cannibals problem
e Wolf, goat and cabbage problem

Rathindra Nath Dutta Day 3: Python Programming August 31, 2023 8/8

Practice Problems

e River crossing puzzles

e Missionaries and cannibals problem
e Wolf, goat and cabbage problem

@ n-Queens problem

w

w

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8/8

Practice Problems

e River crossing puzzles

e Missionaries and cannibals problem
e Wolf, goat and cabbage problem

@ n-Queens problem

@ n-puzzle problem

1142
6 5
713 |8

Rathindra Nath Dutta (A L Day 3: Python Programming August 31, 2023 8/8

Practice Problems

o River crossing puzzles
e Missionaries and cannibals problem
e Wolf, goat and cabbage problem

@ n-Queens problem
@ n-puzzle problem

11412

6 5

713 |8
11472 1 2 1142 1142
6 | 5 6 | 4|5 6 | 5 6 |3 |5
713 |8 7138 71318 7 8

Rathindra Nath Dutta (ACMU, ISI) Day 3: Python Programming August 31, 2023 8/8

