
Python Programming
Packing/Unpacking, *args/**kwargs, Lambdas and Uniform Cost Search

Rathindra Nath Dutta

Senior Research Fellow
Advanced Computing & Microelectronics Unit

Indian Statistical Institute, Kolkata

September 07, 2023

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 1 / 13

Packing and Unpacking: Tuples

Following creates a tuple: x = (10, 20, 30)

What about the following: y = 10, 20, 30

also creates a tuple; verify with type(y)

Such comma separated list is packed into a tuple automatically
and this tuple is then assigned to variable y

Now what about: a, b, c = y

print the values of a, b, and c

The tuple y is automatically unpacked
then the following happens: a, b, c = 10, 20, 30

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 2 / 13

Packing and Unpacking: Tuples

Following creates a tuple: x = (10, 20, 30)

What about the following: y = 10, 20, 30

also creates a tuple; verify with type(y)

Such comma separated list is packed into a tuple automatically
and this tuple is then assigned to variable y

Now what about: a, b, c = y

print the values of a, b, and c

The tuple y is automatically unpacked
then the following happens: a, b, c = 10, 20, 30

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 2 / 13

Packing and Unpacking: Tuples

Following creates a tuple: x = (10, 20, 30)

What about the following: y = 10, 20, 30

also creates a tuple; verify with type(y)

Such comma separated list is packed into a tuple automatically
and this tuple is then assigned to variable y

Now what about: a, b, c = y

print the values of a, b, and c

The tuple y is automatically unpacked
then the following happens: a, b, c = 10, 20, 30

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 2 / 13

Packing and Unpacking: Tuples

Following creates a tuple: x = (10, 20, 30)

What about the following: y = 10, 20, 30

also creates a tuple; verify with type(y)

Such comma separated list is packed into a tuple automatically
and this tuple is then assigned to variable y

Now what about: a, b, c = y

print the values of a, b, and c

The tuple y is automatically unpacked
then the following happens: a, b, c = 10, 20, 30

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 2 / 13

Packing and Unpacking: Tuples

Following creates a tuple: x = (10, 20, 30)

What about the following: y = 10, 20, 30

also creates a tuple; verify with type(y)

Such comma separated list is packed into a tuple automatically
and this tuple is then assigned to variable y

Now what about: a, b, c = y

print the values of a, b, and c

The tuple y is automatically unpacked
then the following happens: a, b, c = 10, 20, 30

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 2 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Iterable

Put an asterisk (*) in front of a variable to mark it as an iterable
(e.g. list)

We can assign (pack) multiple values into such variables
*a = 10, 20, 30 # print and check type of a

What about: a, b, *c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20, 30, 40, 50

print and test

[]

What about: a, *b, c = 10, 20 # print and test

We can unpack an iterable by placing an asterisk in front of it

x = [1, 2, 3]

print(x) # as a list

print(*x) # individual elements

same as: print(x[0], x[1], x[2])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 3 / 13

Packing and Unpacking: Functions

The packing/unpacking is ubiquitous in Python

Returning multiple values from a function

It can be used to pass variable number of arguments

def add(*args):

sum = 0

for val in args:

sum += val

return sum

add(1, 2)

add(1, 2, 3 ,5)

add() # also possible

The mandatory arguments are placed at the front

def myFunc(arg1, arg2, *args):

print(f"called with {2+len(args)} arguments")

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 4 / 13

Packing and Unpacking: Functions

The packing/unpacking is ubiquitous in Python

Returning multiple values from a function

It can be used to pass variable number of arguments

def add(*args):

sum = 0

for val in args:

sum += val

return sum

add(1, 2)

add(1, 2, 3 ,5)

add() # also possible

The mandatory arguments are placed at the front

def myFunc(arg1, arg2, *args):

print(f"called with {2+len(args)} arguments")

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 4 / 13

Packing and Unpacking: Functions

The packing/unpacking is ubiquitous in Python

Returning multiple values from a function

It can be used to pass variable number of arguments

def add(*args):

sum = 0

for val in args:

sum += val

return sum

add(1, 2)

add(1, 2, 3 ,5)

add() # also possible

The mandatory arguments are placed at the front

def myFunc(arg1, arg2, *args):

print(f"called with {2+len(args)} arguments")

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 4 / 13

Packing and Unpacking: Functions

The packing/unpacking is ubiquitous in Python

Returning multiple values from a function

It can be used to pass variable number of arguments

def add(*args):

sum = 0

for val in args:

sum += val

return sum

add(1, 2)

add(1, 2, 3 ,5)

add() # also possible

The mandatory arguments are placed at the front

def myFunc(arg1, arg2, *args):

print(f"called with {2+len(args)} arguments")

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 4 / 13

Keyworded Arguments

Positional Argument : Classical way of passing arguments

def foo(x, y):

print(f'value of x is {x} and y is {y}')

...

foo(10, 20) # x=10, y=20

Arguments are ordered1

Keyword Argument : We can be explicit about the associations

foo(x=10, y=20)

With explicit associations, we can pass arguments out of order

foo(y=20, x=10)

We can also do the following:

vals = {'x': 10, 'y': 20} # keys are arguments (as str)

foo(**vals) # unpacks the dict

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 5 / 13

Keyworded Arguments

Positional Argument : Classical way of passing arguments

def foo(x, y):

print(f'value of x is {x} and y is {y}')

...

foo(10, 20) # x=10, y=20

Arguments are ordered1

Keyword Argument : We can be explicit about the associations

foo(x=10, y=20)

With explicit associations, we can pass arguments out of order

foo(y=20, x=10)

We can also do the following:

vals = {'x': 10, 'y': 20} # keys are arguments (as str)

foo(**vals) # unpacks the dict

1Things in *args are also ordered
Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 5 / 13

Keyworded Arguments

Positional Argument : Classical way of passing arguments

def foo(x, y):

print(f'value of x is {x} and y is {y}')

...

foo(10, 20) # x=10, y=20

Arguments are ordered1

Keyword Argument : We can be explicit about the associations

foo(x=10, y=20)

With explicit associations, we can pass arguments out of order

foo(y=20, x=10)

We can also do the following:

vals = {'x': 10, 'y': 20} # keys are arguments (as str)

foo(**vals) # unpacks the dict

1Things in *args are also ordered
Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 5 / 13

Keyworded Arguments

Positional Argument : Classical way of passing arguments

def foo(x, y):

print(f'value of x is {x} and y is {y}')

...

foo(10, 20) # x=10, y=20

Arguments are ordered1

Keyword Argument : We can be explicit about the associations

foo(x=10, y=20)

With explicit associations, we can pass arguments out of order

foo(y=20, x=10)

We can also do the following:

vals = {'x': 10, 'y': 20} # keys are arguments (as str)

foo(**vals) # unpacks the dict

1Things in *args are also ordered
Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 5 / 13

Keyworded Arguments

Positional Argument : Classical way of passing arguments

def foo(x, y):

print(f'value of x is {x} and y is {y}')

...

foo(10, 20) # x=10, y=20

Arguments are ordered1

Keyword Argument : We can be explicit about the associations

foo(x=10, y=20)

With explicit associations, we can pass arguments out of order

foo(y=20, x=10)

We can also do the following:

vals = {'x': 10, 'y': 20} # keys are arguments (as str)

foo(**vals) # unpacks the dict

1Things in *args are also ordered
Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 5 / 13

Keyworded Arguments

Positional Argument : Classical way of passing arguments

def foo(x, y):

print(f'value of x is {x} and y is {y}')

...

foo(10, 20) # x=10, y=20

Arguments are ordered1

Keyword Argument : We can be explicit about the associations

foo(x=10, y=20)

With explicit associations, we can pass arguments out of order

foo(y=20, x=10)

We can also do the following:

vals = {'x': 10, 'y': 20} # keys are arguments (as str)

foo(**vals) # unpacks the dict
1Things in *args are also ordered

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 5 / 13

More on Keyworded Arguments

We can pass keyworded variable length of arguments to a function

def foo(**kwargs): # received as a dict object

for key, value in kwargs.items():

print(f'{key} = {value}')

foo(x=10, z=30, y=20)

Careful with the ordering of *args, **kwargs and formal args

def foo(arg1, arg2, *args, **kwargs): # note the order

...

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 6 / 13

More on Keyworded Arguments

We can pass keyworded variable length of arguments to a function

def foo(**kwargs): # received as a dict object

for key, value in kwargs.items():

print(f'{key} = {value}')

foo(x=10, z=30, y=20)

Careful with the ordering of *args, **kwargs and formal args

def foo(arg1, arg2, *args, **kwargs): # note the order

...

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 6 / 13

Creating Function Alias

We can create aliases of a function, just like any variable

def f(x):

print(x)

h = f # h is now an alias of function f

now both f and h can be called

h(10) # same as calling f(10)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 7 / 13

Lambdas

Anonymous function having only a single statement

Typically used for temporary purposes

Syntax: lambda args: expression

We may assign it to some alias

f = lambda a: print(a)

f(10)

Think of this as

def some_name(a):

print(a)

f = some_name

f(10)

Another example:

f = lambda a,b: a+b

evaluated expression is returned

r = f(10, 20)

print(r) # 30

Think of this as

def add(a, b):

return a+b

f = add

r = f(10, 20)

print(r)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 8 / 13

Lambdas

Anonymous function having only a single statement

Typically used for temporary purposes

Syntax: lambda args: expression

We may assign it to some alias

f = lambda a: print(a)

f(10)

Think of this as

def some_name(a):

print(a)

f = some_name

f(10)

Another example:

f = lambda a,b: a+b

evaluated expression is returned

r = f(10, 20)

print(r) # 30

Think of this as

def add(a, b):

return a+b

f = add

r = f(10, 20)

print(r)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 8 / 13

Lambdas

Anonymous function having only a single statement

Typically used for temporary purposes

Syntax: lambda args: expression

We may assign it to some alias

f = lambda a: print(a)

f(10)

Think of this as

def some_name(a):

print(a)

f = some_name

f(10)

Another example:

f = lambda a,b: a+b

evaluated expression is returned

r = f(10, 20)

print(r) # 30

Think of this as

def add(a, b):

return a+b

f = add

r = f(10, 20)

print(r)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 8 / 13

Lambdas

Anonymous function having only a single statement

Typically used for temporary purposes

Syntax: lambda args: expression

We may assign it to some alias

f = lambda a: print(a)

f(10)

Think of this as

def some_name(a):

print(a)

f = some_name

f(10)

Another example:

f = lambda a,b: a+b

evaluated expression is returned

r = f(10, 20)

print(r) # 30

Think of this as

def add(a, b):

return a+b

f = add

r = f(10, 20)

print(r)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 8 / 13

Lambdas

Anonymous function having only a single statement

Typically used for temporary purposes

Syntax: lambda args: expression

We may assign it to some alias

f = lambda a: print(a)

f(10)

Think of this as

def some_name(a):

print(a)

f = some_name

f(10)

Another example:

f = lambda a,b: a+b

evaluated expression is returned

r = f(10, 20)

print(r) # 30

Think of this as

def add(a, b):

return a+b

f = add

r = f(10, 20)

print(r)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 8 / 13

Using Lambdas: an Example

Suppose we want to sort a list 2D points
P = [(1,2), (3,0), (2,2), (2,1)]

We may use the built-in sort() method

P.sort()

print(P) # [(1, 2), (2, 1), (2, 2), (3, 0)]

Sorts in lexicographic order starting with x-coordinate

What if we want to sort by y-coordinates?

The built-in sort() method can accept an argument which
specifies the comparison key : sort(key=some_mapping_func)

Given an element, the mapping function returns a value that is
actually used in the sorting comparison

For each point a, a[1] is its y-coordinate value

P.sort(key=lambda a: a[1]) # only by y-coordinates

print(P) # [(3, 0), (2, 1), (1, 2), (2, 2)]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 9 / 13

Using Lambdas: an Example

Suppose we want to sort a list 2D points
P = [(1,2), (3,0), (2,2), (2,1)]

We may use the built-in sort() method

P.sort()

print(P) # [(1, 2), (2, 1), (2, 2), (3, 0)]

Sorts in lexicographic order starting with x-coordinate

What if we want to sort by y-coordinates?

The built-in sort() method can accept an argument which
specifies the comparison key : sort(key=some_mapping_func)

Given an element, the mapping function returns a value that is
actually used in the sorting comparison

For each point a, a[1] is its y-coordinate value

P.sort(key=lambda a: a[1]) # only by y-coordinates

print(P) # [(3, 0), (2, 1), (1, 2), (2, 2)]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 9 / 13

Using Lambdas: an Example

Suppose we want to sort a list 2D points
P = [(1,2), (3,0), (2,2), (2,1)]

We may use the built-in sort() method

P.sort()

print(P) # [(1, 2), (2, 1), (2, 2), (3, 0)]

Sorts in lexicographic order starting with x-coordinate

What if we want to sort by y-coordinates?

The built-in sort() method can accept an argument which
specifies the comparison key : sort(key=some_mapping_func)

Given an element, the mapping function returns a value that is
actually used in the sorting comparison

For each point a, a[1] is its y-coordinate value

P.sort(key=lambda a: a[1]) # only by y-coordinates

print(P) # [(3, 0), (2, 1), (1, 2), (2, 2)]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 9 / 13

Using Lambdas: an Example

Suppose we want to sort a list 2D points
P = [(1,2), (3,0), (2,2), (2,1)]

We may use the built-in sort() method

P.sort()

print(P) # [(1, 2), (2, 1), (2, 2), (3, 0)]

Sorts in lexicographic order starting with x-coordinate

What if we want to sort by y-coordinates?

The built-in sort() method can accept an argument which
specifies the comparison key : sort(key=some_mapping_func)

Given an element, the mapping function returns a value that is
actually used in the sorting comparison

For each point a, a[1] is its y-coordinate value

P.sort(key=lambda a: a[1]) # only by y-coordinates

print(P) # [(3, 0), (2, 1), (1, 2), (2, 2)]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 9 / 13

Using Lambdas: an Example

Suppose we want to sort a list 2D points
P = [(1,2), (3,0), (2,2), (2,1)]

We may use the built-in sort() method

P.sort()

print(P) # [(1, 2), (2, 1), (2, 2), (3, 0)]

Sorts in lexicographic order starting with x-coordinate

What if we want to sort by y-coordinates?

The built-in sort() method can accept an argument which
specifies the comparison key : sort(key=some_mapping_func)

Given an element, the mapping function returns a value that is
actually used in the sorting comparison

For each point a, a[1] is its y-coordinate value

P.sort(key=lambda a: a[1]) # only by y-coordinates

print(P) # [(3, 0), (2, 1), (1, 2), (2, 2)]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 9 / 13

Using Lambdas: an Example

Suppose we want to sort a list 2D points
P = [(1,2), (3,0), (2,2), (2,1)]

We may use the built-in sort() method

P.sort()

print(P) # [(1, 2), (2, 1), (2, 2), (3, 0)]

Sorts in lexicographic order starting with x-coordinate

What if we want to sort by y-coordinates?

The built-in sort() method can accept an argument which
specifies the comparison key : sort(key=some_mapping_func)

Given an element, the mapping function returns a value that is
actually used in the sorting comparison

For each point a, a[1] is its y-coordinate value

P.sort(key=lambda a: a[1]) # only by y-coordinates

print(P) # [(3, 0), (2, 1), (1, 2), (2, 2)]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 9 / 13

Using Lambdas: More Examples

P = [(1,2), (3,0), (2,2), (2,1)]

min(P, key=lambda a: a[1]) # point having min y

max(P, key=lambda a: a[0]+a[1]) # point having max (x+y)

students = []

students.append({'name': 'abcd', 'marks': 90})

students.append({'name': 'wxyz', 'marks': 40})

students.append({'name': 'mnop', 'marks': 70})

student having min marks

min_student = min(students, key=lambda s: s['marks'])

print(min_student)

sort students by names

students.sort(key=lambda s: s['name'])

print(students)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 10 / 13

Using Lambdas: More Examples

P = [(1,2), (3,0), (2,2), (2,1)]

min(P, key=lambda a: a[1]) # point having min y

max(P, key=lambda a: a[0]+a[1]) # point having max (x+y)

students = []

students.append({'name': 'abcd', 'marks': 90})

students.append({'name': 'wxyz', 'marks': 40})

students.append({'name': 'mnop', 'marks': 70})

student having min marks

min_student = min(students, key=lambda s: s['marks'])

print(min_student)

sort students by names

students.sort(key=lambda s: s['name'])

print(students)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 10 / 13

Using Lambdas: More Examples

P = [(1,2), (3,0), (2,2), (2,1)]

min(P, key=lambda a: a[1]) # point having min y

max(P, key=lambda a: a[0]+a[1]) # point having max (x+y)

students = []

students.append({'name': 'abcd', 'marks': 90})

students.append({'name': 'wxyz', 'marks': 40})

students.append({'name': 'mnop', 'marks': 70})

student having min marks

min_student = min(students, key=lambda s: s['marks'])

print(min_student)

sort students by names

students.sort(key=lambda s: s['name'])

print(students)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 10 / 13

Using Lambdas: More Examples

P = [(1,2), (3,0), (2,2), (2,1)]

min(P, key=lambda a: a[1]) # point having min y

max(P, key=lambda a: a[0]+a[1]) # point having max (x+y)

students = []

students.append({'name': 'abcd', 'marks': 90})

students.append({'name': 'wxyz', 'marks': 40})

students.append({'name': 'mnop', 'marks': 70})

student having min marks

min_student = min(students, key=lambda s: s['marks'])

print(min_student)

sort students by names

students.sort(key=lambda s: s['name'])

print(students)

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 10 / 13

Weighted Graphs

Our previous graph class

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v):

self._adj_list[u].append(v)

self._adj_list[v].append(u)

def get_neighbours(self, v):

return self._adj_list[v]

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 11 / 13

Weighted Graphs

Store weights for each edge

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v, weight): # new parameter

self._adj_list[u].append((v, weight)) # tuple

self._adj_list[v].append((u, weight))

def get_neighbours(self, v):

return self._adj_list[v] # returns a list of tuples

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 11 / 13

Weighted Graphs

Store weights for each edge

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v, weight=1): # default value

self._adj_list[u].append((v, weight)) # tuple

self._adj_list[v].append((u, weight))

def get_neighbours(self, v):

return self._adj_list[v] # returns a list of tuples

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 11 / 13

Weighted Graphs

Store weights for each edge: using dictionary

class Graph:

def __init__(self, n):

self._vertex_count = n

self._adj_list = [[] for _ in range(n)]

def add_edge(self, u, v, weight=1): # default value

self._adj_list[u].append({'node': v,'weight': weight})

self._adj_list[v].append({'node': u,'weight': weight})

def get_neighbours(self, v):

return self._adj_list[v] # returns a list of tuples

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 11 / 13

Using the Modified Graph Class

g = Graph(5)

g.add_edge(0, 1) # default weight 1

g.add_edge(0, 2, 10)

g.add_edge(0, 3, 1)

g.add_edge(0, 4, 4)

g.add_edge(1, 2, 5)

g.add_edge(1, 4, 3)

0

1 2

3

4

1
10

4

1

5

3

How to get the neighbour of node 1 having minimum edge weight?

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 12 / 13

Using the Modified Graph Class

g = Graph(5)

g.add_edge(0, 1) # default weight 1

g.add_edge(0, 2, 10)

g.add_edge(0, 3, 1)

g.add_edge(0, 4, 4)

g.add_edge(1, 2, 5)

g.add_edge(1, 4, 3)

0

1 2

3

4

1
10

4

1

5

3

How to get the neighbour of node 1 having minimum edge weight?

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 12 / 13

Using the Modified Graph Class

g = Graph(5)

g.add_edge(0, 1) # default weight 1

g.add_edge(0, 2, 10)

g.add_edge(0, 3, 1)

g.add_edge(0, 4, 4)

g.add_edge(1, 2, 5)

g.add_edge(1, 4, 3)

0

1 2

3

4

1
10

4

1

5

3

How to get the neighbour of node 1 having minimum edge weight?

neighbours = g.get_neighbours(1) # list of dicts

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 12 / 13

Using the Modified Graph Class

g = Graph(5)

g.add_edge(0, 1) # default weight 1

g.add_edge(0, 2, 10)

g.add_edge(0, 3, 1)

g.add_edge(0, 4, 4)

g.add_edge(1, 2, 5)

g.add_edge(1, 4, 3)

0

1 2

3

4

1
10

4

1

5

3

How to get the neighbour of node 1 having minimum edge weight?

neighbours = g.get_neighbours(1) # list of dicts

min_neighbour = min(neighbours,key=lambda x: x['weight'])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 12 / 13

Using the Modified Graph Class

g = Graph(5)

g.add_edge(0, 1) # default weight 1

g.add_edge(0, 2, 10)

g.add_edge(0, 3, 1)

g.add_edge(0, 4, 4)

g.add_edge(1, 2, 5)

g.add_edge(1, 4, 3)

0

1 2

3

4

1
10

4

1

5

3

How to get the neighbour of node 1 having minimum edge weight?

neighbours = g.get_neighbours(1) # list of dicts

min_neighbour = min(neighbours,key=lambda x: x['weight'])

print(min_neighbour['node'])

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 12 / 13

Uniform Cost Search

Complete code: graph UCS.py

Rathindra Nath Dutta (ACMU, ISI) Day 4: Python Programming September 07, 2023 13 / 13

graph_UCS.py

